These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


362 related items for PubMed ID: 31608056

  • 1. Foxp3 Instability Helps tTregs Distinguish Self and Non-self.
    Zhang Z, Zhou X.
    Front Immunol; 2019; 10():2226. PubMed ID: 31608056
    [Abstract] [Full Text] [Related]

  • 2. Activation and Functional Specialization of Regulatory T Cells Lead to the Generation of Foxp3 Instability.
    Zhang Z, Zhang W, Guo J, Gu Q, Zhu X, Zhou X.
    J Immunol; 2017 Apr 01; 198(7):2612-2625. PubMed ID: 28228556
    [Abstract] [Full Text] [Related]

  • 3. Critical role of OX40 signaling in the TCR-independent phase of human and murine thymic Treg generation.
    Kumar P, Marinelarena A, Raghunathan D, Ragothaman VK, Saini S, Bhattacharya P, Fan J, Epstein AL, Maker AV, Prabhakar BS.
    Cell Mol Immunol; 2019 Feb 01; 16(2):138-153. PubMed ID: 29578532
    [Abstract] [Full Text] [Related]

  • 4. Thymically-derived Foxp3+ regulatory T cells are the primary regulators of type 1 diabetes in the non-obese diabetic mouse model.
    Holohan DR, Van Gool F, Bluestone JA.
    PLoS One; 2019 Feb 01; 14(10):e0217728. PubMed ID: 31647813
    [Abstract] [Full Text] [Related]

  • 5. Thymus-Derived Regulatory T Cells Exhibit Foxp3 Epigenetic Modification and Phenotype Attenuation after Mating in Mice.
    Moldenhauer LM, Schjenken JE, Hope CM, Green ES, Zhang B, Eldi P, Hayball JD, Barry SC, Robertson SA.
    J Immunol; 2019 Aug 01; 203(3):647-657. PubMed ID: 31243091
    [Abstract] [Full Text] [Related]

  • 6. Peripherally induced Treg: mode, stability, and role in specific tolerance.
    Apostolou I, Verginis P, Kretschmer K, Polansky J, Hühn J, von Boehmer H.
    J Clin Immunol; 2008 Nov 01; 28(6):619-24. PubMed ID: 18841451
    [Abstract] [Full Text] [Related]

  • 7. Thymus-derived Foxp3+ regulatory T cells upregulate RORγt expression under inflammatory conditions.
    Yang J, Zou M, Pezoldt J, Zhou X, Huehn J.
    J Mol Med (Berl); 2018 Dec 01; 96(12):1387-1394. PubMed ID: 30357435
    [Abstract] [Full Text] [Related]

  • 8. Regulatory T cells: roles of T cell receptor for their development and function.
    Ohkura N, Sakaguchi S.
    Semin Immunopathol; 2010 Jun 01; 32(2):95-106. PubMed ID: 20179931
    [Abstract] [Full Text] [Related]

  • 9. FOXP3+ regulatory T cells: control of FOXP3 expression by pharmacological agents.
    Ohkura N, Hamaguchi M, Sakaguchi S.
    Trends Pharmacol Sci; 2011 Mar 01; 32(3):158-66. PubMed ID: 21237521
    [Abstract] [Full Text] [Related]

  • 10. Helios+ and Helios- Treg subpopulations are phenotypically and functionally distinct and express dissimilar TCR repertoires.
    Thornton AM, Lu J, Korty PE, Kim YC, Martens C, Sun PD, Shevach EM.
    Eur J Immunol; 2019 Mar 01; 49(3):398-412. PubMed ID: 30620397
    [Abstract] [Full Text] [Related]

  • 11. Differences in Expression Level of Helios and Neuropilin-1 Do Not Distinguish Thymus-Derived from Extrathymically-Induced CD4+Foxp3+ Regulatory T Cells.
    Szurek E, Cebula A, Wojciech L, Pietrzak M, Rempala G, Kisielow P, Ignatowicz L.
    PLoS One; 2015 Mar 01; 10(10):e0141161. PubMed ID: 26495986
    [Abstract] [Full Text] [Related]

  • 12. Helios+ and RORγt+ Treg populations are differentially regulated by MHCII, CD28, and ICOS to shape the intestinal Treg pool.
    Cruz-Morales E, Hart AP, Fossett GM, Laufer TM.
    Mucosal Immunol; 2023 Jun 01; 16(3):264-274. PubMed ID: 36935092
    [Abstract] [Full Text] [Related]

  • 13. A two-step process for thymic regulatory T cell development.
    Lio CW, Hsieh CS.
    Immunity; 2008 Jan 01; 28(1):100-11. PubMed ID: 18199417
    [Abstract] [Full Text] [Related]

  • 14. Thymic commitment of regulatory T cells is a pathway of TCR-dependent selection that isolates repertoires undergoing positive or negative selection.
    Coutinho A, Caramalho I, Seixas E, Demengeot J.
    Curr Top Microbiol Immunol; 2005 Jan 01; 293():43-71. PubMed ID: 15981475
    [Abstract] [Full Text] [Related]

  • 15. Type 1 diabetes vaccine candidates promote human Foxp3(+)Treg induction in humanized mice.
    Serr I, Fürst RW, Achenbach P, Scherm MG, Gökmen F, Haupt F, Sedlmeier EM, Knopff A, Shultz L, Willis RA, Ziegler AG, Daniel C.
    Nat Commun; 2016 Mar 15; 7():10991. PubMed ID: 26975663
    [Abstract] [Full Text] [Related]

  • 16. Antigen-non-specific regulation centered on CD25+Foxp3+ Treg cells.
    Hu G, Liu Z, Zheng C, Zheng SG.
    Cell Mol Immunol; 2010 Nov 15; 7(6):414-8. PubMed ID: 20729905
    [Abstract] [Full Text] [Related]

  • 17. A GMCSF-Neuroantigen Tolerogenic Vaccine Elicits Systemic Lymphocytosis of CD4+ CD25high FOXP3+ Regulatory T Cells in Myelin-Specific TCR Transgenic Mice Contingent Upon Low-Efficiency T Cell Antigen Receptor Recognition.
    Moorman CD, Curtis AD, Bastian AG, Elliott SE, Mannie MD.
    Front Immunol; 2018 Nov 15; 9():3119. PubMed ID: 30687323
    [Abstract] [Full Text] [Related]

  • 18. Analysis of miR-146a and miR-142-3p as Potential Markers of Freshly Isolated or In Vitro-Expanded Human Treg cells.
    Holmstrøm K, Pedersen AE, Gad M.
    Scand J Immunol; 2017 Feb 15; 85(2):113-121. PubMed ID: 27943367
    [Abstract] [Full Text] [Related]

  • 19. Tolerogenic vaccines: Targeting the antigenic and cytokine niches of FOXP3+ regulatory T cells.
    Mannie MD, DeOca KB, Bastian AG, Moorman CD.
    Cell Immunol; 2020 Sep 15; 355():104173. PubMed ID: 32712270
    [Abstract] [Full Text] [Related]

  • 20. Foxp3-mediated suppression of CD95L expression confers resistance to activation-induced cell death in regulatory T cells.
    Weiss EM, Schmidt A, Vobis D, Garbi N, Lahl K, Mayer CT, Sparwasser T, Ludwig A, Suri-Payer E, Oberle N, Krammer PH.
    J Immunol; 2011 Aug 15; 187(4):1684-91. PubMed ID: 21746966
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.