These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


958 related items for PubMed ID: 31610785

  • 1. Study on cyanidin metabolism in petals of pink-flowered strawberry based on transcriptome sequencing and metabolite analysis.
    Xue L, Wang J, Zhao J, Zheng Y, Wang HF, Wu X, Xian C, Lei JJ, Zhong CF, Zhang YT.
    BMC Plant Biol; 2019 Oct 14; 19(1):423. PubMed ID: 31610785
    [Abstract] [Full Text] [Related]

  • 2. Comparative Transcriptome Analysis Uncovers the Regulatory Roles of MicroRNAs Involved in Petal Color Change of Pink-Flowered Strawberry.
    Yue J, Liu Z, Zhao C, Zhao J, Zheng Y, Zhang H, Tan C, Zhang Z, Xue L, Lei J.
    Front Plant Sci; 2022 Oct 14; 13():854508. PubMed ID: 35422831
    [Abstract] [Full Text] [Related]

  • 3. Metabolome and Transcriptome Analysis Reveals Putative Genes Involved in Anthocyanin Accumulation and Coloration in White and Pink Tea (Camellia sinensis) Flower.
    Zhou C, Mei X, Rothenberg DO, Yang Z, Zhang W, Wan S, Yang H, Zhang L.
    Molecules; 2020 Jan 02; 25(1):. PubMed ID: 31906542
    [Abstract] [Full Text] [Related]

  • 4. Metabolome and Transcriptome Sequencing Analysis Reveals Anthocyanin Metabolism in Pink Flowers of Anthocyanin-Rich Tea (Camellia sinensis).
    Rothenberg DO, Yang H, Chen M, Zhang W, Zhang L.
    Molecules; 2019 Mar 18; 24(6):. PubMed ID: 30889908
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Genetic and multi-omics analyses reveal BnaA07.PAP2In-184-317 as the key gene conferring anthocyanin-based color in Brassica napus flowers.
    Ye S, Hua S, Ma T, Ma X, Chen Y, Wu L, Zhao L, Yi B, Ma C, Tu J, Shen J, Fu T, Wen J.
    J Exp Bot; 2022 Nov 02; 73(19):6630-6645. PubMed ID: 35857343
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Metabolome and transcriptome analyses of the molecular mechanisms of flower color mutation in tobacco.
    Jiao F, Zhao L, Wu X, Song Z, Li Y.
    BMC Genomics; 2020 Sep 07; 21(1):611. PubMed ID: 32894038
    [Abstract] [Full Text] [Related]

  • 14. Transcriptome and chemical analyses revealed the mechanism of flower color formation in Rosa rugosa.
    Wang Y, Li S, Zhu Z, Xu Z, Qi S, Xing S, Yu Y, Wu Q.
    Front Plant Sci; 2022 Sep 07; 13():1021521. PubMed ID: 36212326
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Temporal and spatial regulation of anthocyanin biosynthesis provide diverse flower colour intensities and patterning in Cymbidium orchid.
    Wang L, Albert NW, Zhang H, Arathoon S, Boase MR, Ngo H, Schwinn KE, Davies KM, Lewis DH.
    Planta; 2014 Nov 07; 240(5):983-1002. PubMed ID: 25183255
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 48.