These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
482 related items for PubMed ID: 31627019
21. Assessment of ECG frequency and morphology parameters for automatic classification of life-threatening cardiac arrhythmias. Krasteva V, Jekova I. Physiol Meas; 2005 Oct; 26(5):707-23. PubMed ID: 16088063 [Abstract] [Full Text] [Related]
22. High accuracy distinction of shockable and non-shockable arrhythmias in abnormal classes through wavelet transform with pseudo differential like operators. Rahman MM, Albeverio S, Kagawa T, Kawasaki S, Okai T, Oya H, Yahagi Y, Yoshida MW. Sci Rep; 2023 Jun 12; 13(1):9513. PubMed ID: 37308508 [Abstract] [Full Text] [Related]
23. Shock advisory system for heart rhythm analysis during cardiopulmonary resuscitation using a single ECG input of automated external defibrillators. Krasteva V, Jekova I, Dotsinsky I, Didon JP. Ann Biomed Eng; 2010 Apr 12; 38(4):1326-36. PubMed ID: 20069371 [Abstract] [Full Text] [Related]
24. Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Asl BM, Setarehdan SK, Mohebbi M. Artif Intell Med; 2008 Sep 12; 44(1):51-64. PubMed ID: 18585905 [Abstract] [Full Text] [Related]
28. Arrhythmia Diagnosis by Using Level-Crossing ECG Sampling and Sub-Bands Features Extraction for Mobile Healthcare. Mian Qaisar S, Fawad Hussain S. Sensors (Basel); 2020 Apr 16; 20(8):. PubMed ID: 32316133 [Abstract] [Full Text] [Related]
29. Arrhythmia Recognition and Classification Using ECG Morphology and Segment Feature Analysis. Zhu W, Chen X, Wang Y, Wang L. IEEE/ACM Trans Comput Biol Bioinform; 2019 Apr 16; 16(1):131-138. PubMed ID: 29994263 [Abstract] [Full Text] [Related]
30. Identifying potentially shockable rhythms without interrupting cardiopulmonary resuscitation. Li Y, Bisera J, Geheb F, Tang W, Weil MH. Crit Care Med; 2008 Jan 16; 36(1):198-203. PubMed ID: 18090359 [Abstract] [Full Text] [Related]
31. Classification of myocardial infarction based on hybrid feature extraction and artificial intelligence tools by adopting tunable-Q wavelet transform (TQWT), variational mode decomposition (VMD) and neural networks. Zeng W, Yuan J, Yuan C, Wang Q, Liu F, Wang Y. Artif Intell Med; 2020 Jun 16; 106():101848. PubMed ID: 32593387 [Abstract] [Full Text] [Related]
32. Fuzzy logic-based diagnostic algorithm for implantable cardioverter defibrillators. Bárdossy A, Blinowska A, Kuzmicz W, Ollitrault J, Lewandowski M, Przybylski A, Jaworski Z. Artif Intell Med; 2014 Feb 16; 60(2):113-21. PubMed ID: 24503486 [Abstract] [Full Text] [Related]
33. Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System. Li H, Yuan D, Wang Y, Cui D, Cao L. Sensors (Basel); 2016 Oct 20; 16(10):. PubMed ID: 27775596 [Abstract] [Full Text] [Related]
38. Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine. Asgari S, Mehrnia A, Moussavi M. Comput Biol Med; 2015 May 20; 60():132-42. PubMed ID: 25817534 [Abstract] [Full Text] [Related]
39. Automated External Defibrillator Shock Advisement Discordance Among Multiple Electrocardiographic Rhythms and Devices: A Preliminary Report. Koller AC, Salcido DD, Lawrence GL, Menegazzi JJ. Prehosp Emerg Care; 2019 May 20; 23(5):740-745. PubMed ID: 30892980 [Abstract] [Full Text] [Related]