These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


139 related items for PubMed ID: 31631226

  • 1. A comprehensive review and evaluation of computational methods for identifying protein complexes from protein-protein interaction networks.
    Wu Z, Liao Q, Liu B.
    Brief Bioinform; 2020 Sep 25; 21(5):1531-1548. PubMed ID: 31631226
    [Abstract] [Full Text] [Related]

  • 2. A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks.
    Ou-Yang L, Yan H, Zhang XF.
    BMC Bioinformatics; 2017 Dec 01; 18(Suppl 13):463. PubMed ID: 29219066
    [Abstract] [Full Text] [Related]

  • 3. Protein complex prediction in large ontology attributed protein-protein interaction networks.
    Zhang Y, Lin H, Yang Z, Wang J, Li Y, Xu B.
    IEEE/ACM Trans Comput Biol Bioinform; 2013 Dec 01; 10(3):729-41. PubMed ID: 24091405
    [Abstract] [Full Text] [Related]

  • 4. A density-based clustering approach for identifying overlapping protein complexes with functional preferences.
    Hu L, Chan KC.
    BMC Bioinformatics; 2015 May 27; 16():174. PubMed ID: 26013799
    [Abstract] [Full Text] [Related]

  • 5. Identifying protein complexes and functional modules--from static PPI networks to dynamic PPI networks.
    Chen B, Fan W, Liu J, Wu FX.
    Brief Bioinform; 2014 Mar 27; 15(2):177-94. PubMed ID: 23780996
    [Abstract] [Full Text] [Related]

  • 6. A partially shared joint clustering framework for detecting protein complexes from multiple state-specific signed interaction networks.
    Zhan Y, Liu J, Wu M, Tan CSH, Li X, Ou-Yang L.
    Comput Biol Med; 2023 Jun 27; 159():106936. PubMed ID: 37105110
    [Abstract] [Full Text] [Related]

  • 7. Identifying Protein Complexes from Dynamic Temporal Interval Protein-Protein Interaction Networks.
    Zhang J, Zhong C, Lin HX, Wang M.
    Biomed Res Int; 2019 Jun 27; 2019():3726721. PubMed ID: 31531351
    [Abstract] [Full Text] [Related]

  • 8. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.
    Theofilatos K, Pavlopoulou N, Papasavvas C, Likothanassis S, Dimitrakopoulos C, Georgopoulos E, Moschopoulos C, Mavroudi S.
    Artif Intell Med; 2015 Mar 27; 63(3):181-9. PubMed ID: 25765008
    [Abstract] [Full Text] [Related]

  • 9. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B, Guan J.
    IEEE/ACM Trans Comput Biol Bioinform; 2014 Mar 27; 11(4):616-27. PubMed ID: 26356332
    [Abstract] [Full Text] [Related]

  • 10. Impact of low-confidence interactions on computational identification of protein complexes.
    Paul M, Anand A.
    J Bioinform Comput Biol; 2020 Aug 27; 18(4):2050025. PubMed ID: 32757809
    [Abstract] [Full Text] [Related]

  • 11. Neighbor Affinity-Based Core-Attachment Method to Detect Protein Complexes in Dynamic PPI Networks.
    Lei X, Liang J.
    Molecules; 2017 Jul 24; 22(7):. PubMed ID: 28737728
    [Abstract] [Full Text] [Related]

  • 12. Computational identification of protein complexes from network interactions: Present state, challenges, and the way forward.
    Omranian S, Nikoloski Z, Grimm DG.
    Comput Struct Biotechnol J; 2022 Jul 24; 20():2699-2712. PubMed ID: 35685359
    [Abstract] [Full Text] [Related]

  • 13. Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods.
    Dimitrakopoulos C, Theofilatos K, Pegkas A, Likothanassis S, Mavroudi S.
    Artif Intell Med; 2016 Jul 24; 71():62-9. PubMed ID: 27506132
    [Abstract] [Full Text] [Related]

  • 14. Protein Complexes Prediction Method Based on Core-Attachment Structure and Functional Annotations.
    Li B, Liao B.
    Int J Mol Sci; 2017 Sep 06; 18(9):. PubMed ID: 28878201
    [Abstract] [Full Text] [Related]

  • 15. A New Method for Detecting Protein Complexes based on the Three Node Cliques.
    Zhang W, Zou X.
    IEEE/ACM Trans Comput Biol Bioinform; 2015 Sep 06; 12(4):879-86. PubMed ID: 26357329
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. idenPC-MIIP: identify protein complexes from weighted PPI networks using mutual important interacting partner relation.
    Wu Z, Liao Q, Liu B.
    Brief Bioinform; 2021 Mar 22; 22(2):1972-1983. PubMed ID: 32065215
    [Abstract] [Full Text] [Related]

  • 18. Identifying protein complexes based on node embeddings obtained from protein-protein interaction networks.
    Liu X, Yang Z, Sang S, Zhou Z, Wang L, Zhang Y, Lin H, Wang J, Xu B.
    BMC Bioinformatics; 2018 Sep 21; 19(1):332. PubMed ID: 30241459
    [Abstract] [Full Text] [Related]

  • 19. A comprehensive review and comparison of different computational methods for protein remote homology detection.
    Chen J, Guo M, Wang X, Liu B.
    Brief Bioinform; 2018 Mar 01; 19(2):231-244. PubMed ID: 27881430
    [Abstract] [Full Text] [Related]

  • 20. Identifying protein complexes based on an edge weight algorithm and core-attachment structure.
    Wang R, Liu G, Wang C.
    BMC Bioinformatics; 2019 Sep 14; 20(1):471. PubMed ID: 31521132
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.