These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
3217 related items for PubMed ID: 31633127
1. ARCTIC CHANGE AND POSSIBLE INFLUENCE ON MID-LATITUDE CLIMATE AND WEATHER: A US CLIVAR White Paper. Cohen J, Zhang X, Francis J, Jung T, Kwok R, Overland J, Ballinger T, Blackport R, Bhatt US, Chen H, Coumou D, Feldstein S, Handorf D, Hell M, Henderson G, Ionita M, Kretschmer M, Laliberte F, Lee S, Linderholm H, Maslowski W, Rigor I, Routson C, Screen J, Semmler T, Singh D, Smith D, Stroeve J, Taylor PC, Vihma T, Wang M, Wang S, Wu Y, Wendisch M, Yoon J. US CLIVAR Rep; 2018 Mar; n/a():. PubMed ID: 31633127 [Abstract] [Full Text] [Related]
2. Atmospheric forcing dominates winter Barents-Kara sea ice variability on interannual to decadal time scales. Liu Z, Risi C, Codron F, Jian Z, Wei Z, He X, Poulsen CJ, Wang Y, Chen D, Ma W, Cheng Y, Bowen GJ. Proc Natl Acad Sci U S A; 2022 Sep 06; 119(36):e2120770119. PubMed ID: 36037334 [Abstract] [Full Text] [Related]
3. Evidence linking rapid Arctic warming to mid-latitude weather patterns. Francis J, Skific N. Philos Trans A Math Phys Eng Sci; 2015 Jul 13; 373(2045):. PubMed ID: 26032322 [Abstract] [Full Text] [Related]
4. Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events. Mann ME, Rahmstorf S, Kornhuber K, Steinman BA, Miller SK, Coumou D. Sci Rep; 2017 Mar 27; 7():45242. PubMed ID: 28345645 [Abstract] [Full Text] [Related]
5. Dynamical mechanisms of Arctic amplification. Dethloff K, Handorf D, Jaiser R, Rinke A, Klinghammer P. Ann N Y Acad Sci; 2019 Jan 27; 1436(1):184-194. PubMed ID: 29754421 [Abstract] [Full Text] [Related]
6. The influence of Arctic amplification on mid-latitude summer circulation. Coumou D, Di Capua G, Vavrus S, Wang L, Wang S. Nat Commun; 2018 Aug 20; 9(1):2959. PubMed ID: 30127423 [Abstract] [Full Text] [Related]
8. Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Kim BM, Son SW, Min SK, Jeong JH, Kim SJ, Zhang X, Shim T, Yoon JH. Nat Commun; 2014 Sep 02; 5():4646. PubMed ID: 25181390 [Abstract] [Full Text] [Related]
9. A possible linkage of Eurasian heat wave and East Asian heavy rainfall in Relation to the Rapid Arctic warming. Nakamura T, Sato T. Environ Res; 2022 Jun 02; 209():112881. PubMed ID: 35122744 [Abstract] [Full Text] [Related]
10. Spatio-temporal change and variability of Barents-Kara sea ice, in the Arctic: Ocean and atmospheric implications. Kumar A, Yadav J, Mohan R. Sci Total Environ; 2021 Jan 20; 753():142046. PubMed ID: 32892004 [Abstract] [Full Text] [Related]
11. Spatial variations in the warming trend and the transition to more severe weather in midlatitudes. Estrada F, Kim D, Perron P. Sci Rep; 2021 Jan 08; 11(1):145. PubMed ID: 33420406 [Abstract] [Full Text] [Related]
12. The role of stratospheric ozone for Arctic-midlatitude linkages. Romanowsky E, Handorf D, Jaiser R, Wohltmann I, Dorn W, Ukita J, Cohen J, Dethloff K, Rex M. Sci Rep; 2019 May 28; 9(1):7962. PubMed ID: 31138819 [Abstract] [Full Text] [Related]
16. Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States. Cohen J, Pfeiffer K, Francis JA. Nat Commun; 2018 Mar 13; 9(1):869. PubMed ID: 29535297 [Abstract] [Full Text] [Related]
17. Linking Arctic variability and change with extreme winter weather in the United States. Cohen J, Agel L, Barlow M, Garfinkel CI, White I. Science; 2021 Sep 03; 373(6559):1116-1121. PubMed ID: 34516838 [Abstract] [Full Text] [Related]
18. Extreme climate of the global troposphere and stratosphere in 1940-42 related to El Niño. Brönnimann S, Luterbacher J, Staehelin J, Svendby TM, Hansen G, Svenøe T. Nature; 2004 Oct 21; 431(7011):971-4. PubMed ID: 15496919 [Abstract] [Full Text] [Related]