These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
581 related items for PubMed ID: 31638895
1. Comprehensive analysis of multiprotein bridging factor 1 family genes and SlMBF1c negatively regulate the resistance to Botrytis cinerea in tomato. Zhang X, Xu Z, Chen L, Ren Z. BMC Plant Biol; 2019 Oct 21; 19(1):437. PubMed ID: 31638895 [Abstract] [Full Text] [Related]
2. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. Zhang Y, Li D, Zhang H, Hong Y, Huang L, Liu S, Li X, Ouyang Z, Song F. BMC Plant Biol; 2015 Oct 21; 15():252. PubMed ID: 26490733 [Abstract] [Full Text] [Related]
3. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea. Angulo C, de la O Leyva M, Finiti I, López-Cruz J, Fernández-Crespo E, García-Agustín P, González-Bosch C. J Plant Physiol; 2015 Mar 01; 175():163-73. PubMed ID: 25543862 [Abstract] [Full Text] [Related]
4. Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance. Li X, Huang L, Zhang Y, Ouyang Z, Hong Y, Zhang H, Li D, Song F. BMC Plant Biol; 2014 Oct 28; 14():286. PubMed ID: 25348703 [Abstract] [Full Text] [Related]
5. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. Zhang S, Li X, Sun Z, Shao S, Hu L, Ye M, Zhou Y, Xia X, Yu J, Shi K. J Exp Bot; 2015 Apr 28; 66(7):1951-63. PubMed ID: 25657213 [Abstract] [Full Text] [Related]
6. Knockout of SlMAPK3 Reduced Disease Resistance to Botrytis cinerea in Tomato Plants. Zhang S, Wang L, Zhao R, Yu W, Li R, Li Y, Sheng J, Shen L. J Agric Food Chem; 2018 Aug 29; 66(34):8949-8956. PubMed ID: 30092129 [Abstract] [Full Text] [Related]
7. Tomato Sl3-MMP, a member of the Matrix metalloproteinase family, is required for disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. Li D, Zhang H, Song Q, Wang L, Liu S, Hong Y, Huang L, Song F. BMC Plant Biol; 2015 Jun 14; 15():143. PubMed ID: 26070456 [Abstract] [Full Text] [Related]
8. Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39. Harel YM, Mehari ZH, Rav-David D, Elad Y. Phytopathology; 2014 Feb 14; 104(2):150-7. PubMed ID: 24047252 [Abstract] [Full Text] [Related]
9. Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato. Liu M, Zhang Z, Xu Z, Wang L, Chen C, Ren Z. Plant Cell Rep; 2021 Jan 14; 40(1):43-58. PubMed ID: 32990799 [Abstract] [Full Text] [Related]
10. ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis. Moffat CS, Ingle RA, Wathugala DL, Saunders NJ, Knight H, Knight MR. PLoS One; 2012 Jan 14; 7(4):e35995. PubMed ID: 22563431 [Abstract] [Full Text] [Related]
12. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. El Oirdi M, El Rahman TA, Rigano L, El Hadrami A, Rodriguez MC, Daayf F, Vojnov A, Bouarab K. Plant Cell; 2011 Jun 14; 23(6):2405-21. PubMed ID: 21665999 [Abstract] [Full Text] [Related]
14. The Arabidopsis transcriptional repressor ERF9 participates in resistance against necrotrophic fungi. Maruyama Y, Yamoto N, Suzuki Y, Chiba Y, Yamazaki K, Sato T, Yamaguchi J. Plant Sci; 2013 Dec 14; 213():79-87. PubMed ID: 24157210 [Abstract] [Full Text] [Related]
15. CRISPR/Cas9-Mediated SlMYC2 Mutagenesis Adverse to Tomato Plant Growth and MeJA-Induced Fruit Resistance to Botrytis cinerea. Shu P, Li Z, Min D, Zhang X, Ai W, Li J, Zhou J, Li Z, Li F, Li X. J Agric Food Chem; 2020 May 20; 68(20):5529-5538. PubMed ID: 32372640 [Abstract] [Full Text] [Related]
17. The wheat multidomain cystatin TaMDC1 displays antifungal, antibacterial, and insecticidal activities in planta. Christova PK, Christov NK, Mladenov PV, Imai R. Plant Cell Rep; 2018 Jun 20; 37(6):923-932. PubMed ID: 29532251 [Abstract] [Full Text] [Related]
18. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response. Liu B, Ouyang Z, Zhang Y, Li X, Hong Y, Huang L, Liu S, Zhang H, Li D, Song F. PLoS One; 2014 Jun 20; 9(7):e102067. PubMed ID: 25010573 [Abstract] [Full Text] [Related]
19. Tomato SlMKK2 and SlMKK4 contribute to disease resistance against Botrytis cinerea. Li X, Zhang Y, Huang L, Ouyang Z, Hong Y, Zhang H, Li D, Song F. BMC Plant Biol; 2014 Jun 15; 14():166. PubMed ID: 24930014 [Abstract] [Full Text] [Related]
20. SlERF2 Is Associated with Methyl Jasmonate-Mediated Defense Response against Botrytis cinerea in Tomato Fruit. Yu W, Zhao R, Sheng J, Shen L. J Agric Food Chem; 2018 Sep 26; 66(38):9923-9932. PubMed ID: 30192535 [Abstract] [Full Text] [Related] Page: [Next] [New Search]