These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


260 related items for PubMed ID: 31638916

  • 21. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco.
    Zhang Z, Wang Y, Chang L, Zhang T, An J, Liu Y, Cao Y, Zhao X, Sha X, Hu T, Yang P.
    Plant Cell Rep; 2016 Feb; 35(2):439-53. PubMed ID: 26573680
    [Abstract] [Full Text] [Related]

  • 22. Multiomics Analyses Reveal MsC3H29 Positively Regulates Flavonoid Biosynthesis to Improve Drought Resistance of Autotetraploid Cultivated Alfalfa (Medicago sativa L.).
    Dong X, Han B, Chen J, Luo D, Zhou Q, Liu Z.
    J Agric Food Chem; 2024 Jun 26; 72(25):14448-14465. PubMed ID: 38864675
    [Abstract] [Full Text] [Related]

  • 23. Overexpressing Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in alfalfa.
    Wang Z, Su G, Li M, Ke Q, Kim SY, Li H, Huang J, Xu B, Deng XP, Kwak SS.
    Plant Physiol Biochem; 2016 Dec 26; 109():199-208. PubMed ID: 27721135
    [Abstract] [Full Text] [Related]

  • 24. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.).
    Zhang J, Duan Z, Zhang D, Zhang J, Di H, Wu F, Wang Y.
    Biochem Biophys Res Commun; 2016 Mar 25; 472(1):75-82. PubMed ID: 26906624
    [Abstract] [Full Text] [Related]

  • 25. Comparative analysis of the physiological and transcriptomic profiles reveals alfalfa drought resistance mechanisms.
    Chen F, Ha X, Ma T, Ma H.
    BMC Plant Biol; 2024 Oct 12; 24(1):954. PubMed ID: 39394556
    [Abstract] [Full Text] [Related]

  • 26. Deciphering the role of SPL12 and AGL6 from a genetic module that functions in nodulation and root regeneration in Medicago sativa.
    Nasrollahi V, Yuan ZC, Lu QSM, McDowell T, Kohalmi SE, Hannoufa A.
    Plant Mol Biol; 2022 Dec 12; 110(6):511-529. PubMed ID: 35976552
    [Abstract] [Full Text] [Related]

  • 27. Overexpression of miR156 and Silencing SPL6RNAi and SPL13RNAi Genes in Medicago sativa on the Changes of Carbohydrate Physiochemical, Fermentation, and Nutritional Profiles.
    Lei Y, Hannoufa A, Yu P.
    J Agric Food Chem; 2020 Dec 09; 68(49):14540-14548. PubMed ID: 33232138
    [Abstract] [Full Text] [Related]

  • 28. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.).
    Tang L, Cai H, Ji W, Luo X, Wang Z, Wu J, Wang X, Cui L, Wang Y, Zhu Y, Bai X.
    Plant Physiol Biochem; 2013 Oct 09; 71():22-30. PubMed ID: 23867600
    [Abstract] [Full Text] [Related]

  • 29. Comparative analysis of alfalfa (Medicago sativa L.) seedling transcriptomes reveals genotype-specific drought tolerance mechanisms.
    Ma Q, Xu X, Wang W, Zhao L, Ma D, Xie Y.
    Plant Physiol Biochem; 2021 Sep 09; 166():203-214. PubMed ID: 34118683
    [Abstract] [Full Text] [Related]

  • 30. Label-free quantitative proteomic analysis of alfalfa in response to microRNA156 under high temperature.
    Arshad M, Puri A, Simkovich AJ, Renaud J, Gruber MY, Marsolais F, Hannoufa A.
    BMC Genomics; 2020 Nov 02; 21(1):758. PubMed ID: 33138776
    [Abstract] [Full Text] [Related]

  • 31. Identification of Exogenous Nitric Oxide-Responsive miRNAs from Alfalfa (Medicago sativa L.) under Drought Stress by High-Throughput Sequencing.
    Zhao Y, Ma W, Wei X, Long Y, Zhao Y, Su M, Luo Q.
    Genes (Basel); 2019 Dec 26; 11(1):. PubMed ID: 31888061
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Identification of Loci Associated with Drought Resistance Traits in Heterozygous Autotetraploid Alfalfa (Medicago sativa L.) Using Genome-Wide Association Studies with Genotyping by Sequencing.
    Zhang T, Yu LX, Zheng P, Li Y, Rivera M, Main D, Greene SL.
    PLoS One; 2015 Dec 26; 10(9):e0138931. PubMed ID: 26406473
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Mechanism of action of microRNA166 on nitric oxide in alfalfa (Medicago sativa L.) under drought stress.
    Wei B, Wang Y, Ruan Q, Zhu X, Wang X, Wang T, Zhao Y, Wei X.
    BMC Genomics; 2024 Mar 28; 25(1):316. PubMed ID: 38549050
    [Abstract] [Full Text] [Related]

  • 38. Regulation of endogenous hormone and miRNA in leaves of alfalfa (Medicago sativa L.) seedlings under drought stress by endogenous nitric oxide.
    Ruan Q, Bai X, Wang Y, Zhang X, Wang B, Zhao Y, Zhu X, Wei X.
    BMC Genomics; 2024 Mar 01; 25(1):229. PubMed ID: 38429670
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Endogenous NO-mediated transcripts involved in photosynthesis and carbohydrate metabolism in alfalfa (Medicago sativa L.) seedlings under drought stress.
    Zhao Y, Wei X, Ji X, Ma W.
    Plant Physiol Biochem; 2019 Aug 01; 141():456-465. PubMed ID: 31247428
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.