These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


153 related items for PubMed ID: 31648792

  • 1. Coevolutionary Couplings Unravel PAM-Proximal Constraints of CRISPR-SpCas9.
    Li Y, De la Paz JA, Jiang X, Liu R, Pokkulandra AP, Bleris L, Morcos F.
    Biophys J; 2019 Nov 05; 117(9):1684-1691. PubMed ID: 31648792
    [Abstract] [Full Text] [Related]

  • 2. Rationally Designed Anti-CRISPR Nucleic Acid Inhibitors of CRISPR-Cas9.
    Barkau CL, O'Reilly D, Rohilla KJ, Damha MJ, Gagnon KT.
    Nucleic Acid Ther; 2019 Jun 05; 29(3):136-147. PubMed ID: 30990769
    [Abstract] [Full Text] [Related]

  • 3. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W, Zhang H, Zhang Y, Wang Y, Gan J, Ji Q.
    PLoS Biol; 2019 Oct 05; 17(10):e3000496. PubMed ID: 31603896
    [Abstract] [Full Text] [Related]

  • 4. High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells.
    Kim HK, Lee S, Kim Y, Park J, Min S, Choi JW, Huang TP, Yoon S, Liu DR, Kim HH.
    Nat Biomed Eng; 2020 Jan 05; 4(1):111-124. PubMed ID: 31937939
    [Abstract] [Full Text] [Related]

  • 5. Engineered dual selection for directed evolution of SpCas9 PAM specificity.
    Goldberg GW, Spencer JM, Giganti DO, Camellato BR, Agmon N, Ichikawa DM, Boeke JD, Noyes MB.
    Nat Commun; 2021 Jan 13; 12(1):349. PubMed ID: 33441553
    [Abstract] [Full Text] [Related]

  • 6. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
    Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, Aryee MJ, Joung JK.
    Nature; 2015 Jul 23; 523(7561):481-5. PubMed ID: 26098369
    [Abstract] [Full Text] [Related]

  • 7. [Cas9 protein variant VQR recognizes NGAC protospacer adjacent motif in rice].
    Xin GW, Hu XX, Wang KJ, Wang XC.
    Yi Chuan; 2018 Dec 20; 40(12):1112-1119. PubMed ID: 30559100
    [Abstract] [Full Text] [Related]

  • 8. Cas9 specifies functional viral targets during CRISPR-Cas adaptation.
    Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA.
    Nature; 2015 Mar 12; 519(7542):199-202. PubMed ID: 25707807
    [Abstract] [Full Text] [Related]

  • 9. Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences.
    Hua K, Tao X, Han P, Wang R, Zhu JK.
    Mol Plant; 2019 Jul 01; 12(7):1003-1014. PubMed ID: 30928636
    [Abstract] [Full Text] [Related]

  • 10. An engineered ScCas9 with broad PAM range and high specificity and activity.
    Chatterjee P, Jakimo N, Lee J, Amrani N, Rodríguez T, Koseki SRT, Tysinger E, Qing R, Hao S, Sontheimer EJ, Jacobson J.
    Nat Biotechnol; 2020 Oct 01; 38(10):1154-1158. PubMed ID: 32393822
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.
    Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR.
    Nature; 2018 Apr 05; 556(7699):57-63. PubMed ID: 29512652
    [Abstract] [Full Text] [Related]

  • 15. DNA targeting by Clostridium cellulolyticum CRISPR-Cas9 Type II-C system.
    Fedorova I, Arseniev A, Selkova P, Pobegalov G, Goryanin I, Vasileva A, Musharova O, Abramova M, Kazalov M, Zyubko T, Artamonova T, Artamonova D, Shmakov S, Khodorkovskii M, Severinov K.
    Nucleic Acids Res; 2020 Feb 28; 48(4):2026-2034. PubMed ID: 31943070
    [Abstract] [Full Text] [Related]

  • 16. CRISPR/Cas9 searches for a protospacer adjacent motif by lateral diffusion.
    Globyte V, Lee SH, Bae T, Kim JS, Joo C.
    EMBO J; 2019 Feb 15; 38(4):. PubMed ID: 30573670
    [Abstract] [Full Text] [Related]

  • 17. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits.
    Liu Z, Shan H, Chen S, Chen M, Song Y, Lai L, Li Z.
    FASEB J; 2020 Jan 15; 34(1):588-596. PubMed ID: 31914687
    [Abstract] [Full Text] [Related]

  • 18. Minimal PAM specificity of a highly similar SpCas9 ortholog.
    Chatterjee P, Jakimo N, Jacobson JM.
    Sci Adv; 2018 Oct 15; 4(10):eaau0766. PubMed ID: 30397647
    [Abstract] [Full Text] [Related]

  • 19. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X, Meng X, Liu Q, Li J, Wang K.
    Plant Biotechnol J; 2018 Jan 15; 16(1):292-297. PubMed ID: 28605576
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.