These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


152 related items for PubMed ID: 31653926

  • 1. Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite.
    Li C, Li Q, Wang Z, Ji G, Zhao H, Gao F, Su M, Jiao J, Li Z, Li H.
    Sci Rep; 2019 Oct 25; 9(1):15291. PubMed ID: 31653926
    [Abstract] [Full Text] [Related]

  • 2. Application of phosphogypsum and phosphate-solubilizing fungi to Pb remediation: From simulation to in vivo incubation.
    Meng L, Ding K, Qiu Y, Chen Y, Huo H, Yu D, Tian D, Li Z.
    Sci Total Environ; 2024 Jul 10; 933():173171. PubMed ID: 38740208
    [Abstract] [Full Text] [Related]

  • 3. Remediation of lead-contaminated water by geological fluorapatite and fungus Penicillium oxalicum.
    Tian D, Wang W, Su M, Zheng J, Wu Y, Wang S, Li Z, Hu S.
    Environ Sci Pollut Res Int; 2018 Jul 10; 25(21):21118-21126. PubMed ID: 29770937
    [Abstract] [Full Text] [Related]

  • 4. A study of P release from Fe-P and Ca-P via the organic acids secreted by Aspergillus niger.
    Tian D, Wang L, Hu J, Zhang L, Zhou N, Xia J, Xu M, Yusef KK, Wang S, Li Z, Gao H.
    J Microbiol; 2021 Sep 10; 59(9):819-826. PubMed ID: 34382148
    [Abstract] [Full Text] [Related]

  • 5. Lead immobilization by geological fluorapatite and fungus Aspergillus niger.
    Li Z, Wang F, Bai T, Tao J, Guo J, Yang M, Wang S, Hu S.
    J Hazard Mater; 2016 Dec 15; 320():386-392. PubMed ID: 27585270
    [Abstract] [Full Text] [Related]

  • 6. Lead mineral transformation by fungi.
    Sayer JA, Cotter-Howells JD, Watson C, Hillier S, Gadd GM.
    Curr Biol; 1999 Jul 01; 9(13):691-4. PubMed ID: 10395543
    [Abstract] [Full Text] [Related]

  • 7. Aspergillus niger Enhances Organic and Inorganic Phosphorus Release from Wheat Straw by Secretion of Degrading Enzymes and Oxalic Acid.
    Wang L, Guan H, Hu J, Feng Y, Li X, Yusef KK, Gao H, Tian D.
    J Agric Food Chem; 2022 Sep 07; 70(35):10738-10746. PubMed ID: 36027054
    [Abstract] [Full Text] [Related]

  • 8. Transformation of vanadinite [Pb5 (VO4 )3 Cl] by fungi.
    Ceci A, Rhee YJ, Kierans M, Hillier S, Pendlowski H, Gray N, Persiani AM, Gadd GM.
    Environ Microbiol; 2015 Jun 07; 17(6):2018-34. PubMed ID: 25181352
    [Abstract] [Full Text] [Related]

  • 9. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger.
    Li Z, Bai T, Dai L, Wang F, Tao J, Meng S, Hu Y, Wang S, Hu S.
    Sci Rep; 2016 Apr 29; 6():25313. PubMed ID: 27126606
    [Abstract] [Full Text] [Related]

  • 10. Biotransformation of struvite by Aspergillus niger: phosphate release and magnesium biomineralization as glushinskite.
    Suyamud B, Ferrier J, Csetenyi L, Inthorn D, Gadd GM.
    Environ Microbiol; 2020 Apr 29; 22(4):1588-1602. PubMed ID: 32079035
    [Abstract] [Full Text] [Related]

  • 11. [The solubilization of four insoluble phosphates by some microorganisms].
    Zhao X, Lin Q, Li B.
    Wei Sheng Wu Xue Bao; 2002 Apr 29; 42(2):236-41. PubMed ID: 12557403
    [Abstract] [Full Text] [Related]

  • 12. Fungal Bioweathering of Mimetite and a General Geomycological Model for Lead Apatite Mineral Biotransformations.
    Ceci A, Kierans M, Hillier S, Persiani AM, Gadd GM.
    Appl Environ Microbiol; 2015 Aug 29; 81(15):4955-64. PubMed ID: 25979898
    [Abstract] [Full Text] [Related]

  • 13. Diversity and Phosphate Solubilizing Characteristics of Cultivable Organophosphorus-Mineralizing Bacteria in the Sediments of Sancha Lake.
    Li Y, Yu X, Zheng J, Gong Z, Xu W.
    Int J Environ Res Public Health; 2022 Feb 17; 19(4):. PubMed ID: 35206506
    [Abstract] [Full Text] [Related]

  • 14. Electron microscopy of some rock phosphate dissolving bacteria and fungi.
    Gaur AC, Arora D, Prakash N.
    Folia Microbiol (Praha); 1979 Feb 17; 24(4):314-7. PubMed ID: 527907
    [Abstract] [Full Text] [Related]

  • 15. Phosphate-solubilizing potentiality of the microorganisms capable of utilizing aluminium phosphate as a sole phosphate source.
    Banik S, Dey BK.
    Zentralbl Mikrobiol; 1983 Feb 17; 138(1):17-23. PubMed ID: 6845902
    [Abstract] [Full Text] [Related]

  • 16. Characterization of phosphate solubilizing bacteria in sediments from a shallow eutrophic lake and a wetland: isolation, molecular identification and phosphorus release ability determination.
    Qian Y, Shi J, Chen Y, Lou L, Cui X, Cao R, Li P, Tang J.
    Molecules; 2010 Nov 22; 15(11):8518-33. PubMed ID: 21102378
    [Abstract] [Full Text] [Related]

  • 17. Lead immobilization assisted by fungal decomposition of organophosphate under various pH values.
    Zhang L, Song X, Shao X, Wu Y, Zhang X, Wang S, Pan J, Hu S, Li Z.
    Sci Rep; 2019 Sep 16; 9(1):13353. PubMed ID: 31527665
    [Abstract] [Full Text] [Related]

  • 18. The dissolution of fluorapatite by phosphate-solubilizing fungi: a balance between enhanced phosphorous supply and fluorine toxicity.
    Shao X, Hao W, Konhauser KO, Gao Y, Tang L, Su M, Li Z.
    Environ Sci Pollut Res Int; 2021 Dec 16; 28(48):69393-69400. PubMed ID: 34302245
    [Abstract] [Full Text] [Related]

  • 19. Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments.
    Zhang Y, Chen FS, Wu XQ, Luan FG, Zhang LP, Fang XM, Wan SZ, Hu XF, Ye JR.
    PLoS One; 2018 Dec 16; 13(7):e0199625. PubMed ID: 29995910
    [Abstract] [Full Text] [Related]

  • 20. Mechanisms for solubilization of various insoluble phosphates and activation of immobilized phosphates in different soils by an efficient and salinity-tolerant Aspergillus niger strain An2.
    Li X, Luo L, Yang J, Li B, Yuan H.
    Appl Biochem Biotechnol; 2015 Mar 16; 175(5):2755-68. PubMed ID: 25561059
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.