These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
448 related items for PubMed ID: 31657738
1. Remarkable insensitivity of acorn ant morphology to temperature decouples the evolution of physiological tolerance from body size under urban heat islands. Yilmaz AR, Chick LD, Perez A, Strickler SA, Vaughn S, Martin RA, Diamond SE. J Therm Biol; 2019 Oct; 85():102426. PubMed ID: 31657738 [Abstract] [Full Text] [Related]
2. Evolution of thermal tolerance and its fitness consequences: parallel and non-parallel responses to urban heat islands across three cities. Diamond SE, Chick LD, Perez A, Strickler SA, Martin RA. Proc Biol Sci; 2018 Jul 04; 285(1882):. PubMed ID: 30051828 [Abstract] [Full Text] [Related]
3. Keep your cool: Overwintering physiology in response to urbanization in the acorn ant, Temnothorax curvispinosus. Prileson EG, Clark J, Diamond SE, Lenard A, Medina-Báez OA, Yilmaz AR, Martin RA. J Therm Biol; 2023 May 04; 114():103591. PubMed ID: 37276746 [Abstract] [Full Text] [Related]
4. Evolution of plasticity in the city: urban acorn ants can better tolerate more rapid increases in environmental temperature. Diamond SE, Chick LD, Perez A, Strickler SA, Zhao C. Conserv Physiol; 2018 May 04; 6(1):coy030. PubMed ID: 29977563 [Abstract] [Full Text] [Related]
5. Urban heat islands advance the timing of reproduction in a social insect. Chick LD, Strickler SA, Perez A, Martin RA, Diamond SE. J Therm Biol; 2019 Feb 04; 80():119-125. PubMed ID: 30784475 [Abstract] [Full Text] [Related]
6. The heat is on: Genetic adaptation to urbanization mediated by thermal tolerance and body size. Brans KI, Jansen M, Vanoverbeke J, Tüzün N, Stoks R, De Meester L. Glob Chang Biol; 2017 Dec 04; 23(12):5218-5227. PubMed ID: 28614592 [Abstract] [Full Text] [Related]
7. Physiology Evolves Convergently but Lags Behind Warming in Cities. Diamond SE, Kolaske LR, Martin RA. Integr Comp Biol; 2024 Sep 17; 64(2):402-413. PubMed ID: 38710535 [Abstract] [Full Text] [Related]
8. Evolution, not transgenerational plasticity, explains the adaptive divergence of acorn ant thermal tolerance across an urban-rural temperature cline. Martin RA, Chick LD, Yilmaz AR, Diamond SE. Evol Appl; 2019 Sep 17; 12(8):1678-1687. PubMed ID: 31462922 [Abstract] [Full Text] [Related]
9. Pedal to the metal: Cities power evolutionary divergence by accelerating metabolic rate and locomotor performance. Chick LD, Waters JS, Diamond SE. Evol Appl; 2021 Jan 17; 14(1):36-52. PubMed ID: 33519955 [Abstract] [Full Text] [Related]
10. Evidence for the evolution of thermal tolerance, but not desiccation tolerance, in response to hotter, drier city conditions in a cosmopolitan, terrestrial isopod. Yilmaz AR, Diamond SE, Martin RA. Evol Appl; 2021 Jan 17; 14(1):12-23. PubMed ID: 33519953 [Abstract] [Full Text] [Related]
11. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae). Baudier KM, Mudd AE, Erickson SC, O'Donnell S. J Anim Ecol; 2015 Sep 17; 84(5):1322-30. PubMed ID: 26072696 [Abstract] [Full Text] [Related]
12. In a nutshell, a reciprocal transplant experiment reveals local adaptation and fitness trade-offs in response to urban evolution in an acorn-dwelling ant. Martin RA, Chick LD, Garvin ML, Diamond SE. Evolution; 2021 Apr 17; 75(4):876-887. PubMed ID: 33586171 [Abstract] [Full Text] [Related]
13. Physiological adaptation to cities as a proxy to forecast global-scale responses to climate change. Diamond SE, Martin RA. J Exp Biol; 2021 Feb 24; 224(Pt Suppl 1):. PubMed ID: 33627462 [Abstract] [Full Text] [Related]
14. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change. Andrew NR, Hart RA, Jung MP, Hemmings Z, Terblanche JS. J Insect Physiol; 2013 Sep 24; 59(9):870-80. PubMed ID: 23806604 [Abstract] [Full Text] [Related]
15. Can behaviour and physiology mitigate effects of warming on ectotherms? A test in urban ants. Youngsteadt E, Prado SG, Keleher KJ, Kirchner M. J Anim Ecol; 2023 Mar 24; 92(3):568-579. PubMed ID: 36642830 [Abstract] [Full Text] [Related]
16. Insects in temperate urban parks face stronger selection pressure from the cold than the heat. Bujan J, Bertelsmeier C, Ješovnik A. Ecol Evol; 2024 Aug 24; 14(8):e11335. PubMed ID: 39165538 [Abstract] [Full Text] [Related]
17. Experimental winter warming modifies thermal performance and primes acorn ants for warm weather. MacLean HJ, Penick CA, Dunn RR, Diamond SE. J Insect Physiol; 2017 Jul 24; 100():77-81. PubMed ID: 28549655 [Abstract] [Full Text] [Related]
18. Is phenotypic plasticity a key mechanism for responding to thermal stress in ants? Oms CS, Cerdá X, Boulay R. Naturwissenschaften; 2017 Jun 24; 104(5-6):42. PubMed ID: 28470449 [Abstract] [Full Text] [Related]
19. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance? Esperk T, Kjaersgaard A, Walters RJ, Berger D, Blanckenhorn WU. J Evol Biol; 2016 May 24; 29(5):900-15. PubMed ID: 26801318 [Abstract] [Full Text] [Related]
20. Evidence of plasticity, but not evolutionary divergence, in the thermal limits of a highly successful urban butterfly. Lenard A, Diamond SE. J Insect Physiol; 2024 Jun 24; 155():104648. PubMed ID: 38754698 [Abstract] [Full Text] [Related] Page: [Next] [New Search]