These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


212 related items for PubMed ID: 31661085

  • 1. Ti3C2/BiVO4 Schottky junction as a signal indicator for ultrasensitive photoelectrochemical detection of VEGF165.
    Liu Y, Zeng H, Chai Y, Yuan R, Liu H.
    Chem Commun (Camb); 2019 Nov 12; 55(91):13729-13732. PubMed ID: 31661085
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. A highly sensitive VEGF165 photoelectrochemical biosensor fabricated by assembly of aptamer bridged DNA networks.
    Da H, Liu H, Zheng Y, Yuan R, Chai Y.
    Biosens Bioelectron; 2018 Mar 15; 101():213-218. PubMed ID: 29096358
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Self-powered photoelectrochemical sensor for chlorpyrifos detection in fruit and vegetables based on metal-ligand charge transfer effect by Ti3C2 based Schottky junction.
    Du X, Du W, Sun J, Jiang D.
    Food Chem; 2022 Aug 15; 385():132731. PubMed ID: 35318179
    [Abstract] [Full Text] [Related]

  • 11. CdS/Ti3C2 heterostructure-based photoelectrochemical platform for sensitive and selective detection of trace amount of Cu2.
    Ye C, Xu F, Ullah F, Wang M.
    Anal Bioanal Chem; 2022 May 15; 414(12):3571-3580. PubMed ID: 34982179
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. MoS2@Ti3C2 nanohybrid-based photoelectrochemical biosensor: A platform for ultrasensitive detection of cancer biomarker exosomal miRNA.
    Sun Z, Tong Y, Zhao L, Li J, Gao F, Wang C, Li H, Du L, Jiang Y.
    Talanta; 2022 Feb 01; 238(Pt 2):123077. PubMed ID: 34814060
    [Abstract] [Full Text] [Related]

  • 17. Electrochemical detection of β-lactoglobulin based on a highly selective DNA aptamer and flower-like Au@BiVO4 microspheres.
    Xu S, Dai B, Zhao W, Jiang L, Huang H.
    Anal Chim Acta; 2020 Jul 11; 1120():1-10. PubMed ID: 32475386
    [Abstract] [Full Text] [Related]

  • 18. A photoelectrochemical biosensor based on b-TiO2/CdS:Eu/Ti3C2 heterojunction for the ultrasensitive detection of miRNA-21.
    Liu ST, Chen JS, Liu XP, Mao CJ, Jin BK.
    Talanta; 2023 Feb 01; 253():123601. PubMed ID: 36126520
    [Abstract] [Full Text] [Related]

  • 19. Photoelectrochemical aptamer-based sensing of the vascular endothelial growth factor by adjusting the light harvesting efficiency of g-C3N4 via porous carbon spheres.
    Liu YL, Da HM, Chai YQ, Yuan R, Liu HY.
    Mikrochim Acta; 2019 Apr 10; 186(5):275. PubMed ID: 30969367
    [Abstract] [Full Text] [Related]

  • 20. A ZnIn2S4@ReS2/AgInS2-based photoelectrochemical aptasensor for the ultrasensitive detection of kanamycin.
    Liu XP, Tang YY, Chen JS, Mao CJ, Jin BK.
    Chem Commun (Camb); 2023 Dec 14; 59(100):14847-14850. PubMed ID: 38015452
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.