These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


134 related items for PubMed ID: 31661562

  • 1. Effect of surface conduction-induced electromigration on current monitoring method for electroosmotic flow measurement.
    Babar M, Dubey K, Bahga SS.
    Electrophoresis; 2020 Apr; 41(7-8):570-577. PubMed ID: 31661562
    [Abstract] [Full Text] [Related]

  • 2. Studies of electroosmotic flow and the effects of protein adsorption in plasma-polymerized microchannel surfaces.
    Salim M, Wright PC, McArthur SL.
    Electrophoresis; 2009 Jun; 30(11):1877-87. PubMed ID: 19517430
    [Abstract] [Full Text] [Related]

  • 3. Measuring microchannel electroosmotic mobility and zeta potential by the current monitoring method.
    Shao C, Devoe DL.
    Methods Mol Biol; 2013 Jun; 949():55-63. PubMed ID: 23329435
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Characterization of electroosmotic flow through nanoporous self-assembled arrays.
    Bell K, Gomes M, Nazemifard N.
    Electrophoresis; 2015 Aug; 36(15):1738-43. PubMed ID: 25964193
    [Abstract] [Full Text] [Related]

  • 6. In situ particle zeta potential evaluation in electroosmotic flows from time-resolved microPIV measurements.
    Sureda M, Miller A, Diez FJ.
    Electrophoresis; 2012 Sep; 33(17):2759-68. PubMed ID: 22965723
    [Abstract] [Full Text] [Related]

  • 7. Effect of PVP on the electroosmotic mobility of wet-etched glass microchannels.
    Milanova D, Chambers RD, Bahga SS, Santiago JG.
    Electrophoresis; 2012 Nov; 33(21):3259-62. PubMed ID: 23065690
    [Abstract] [Full Text] [Related]

  • 8. A simple method to determine the surface charge in microfluidic channels.
    Mampallil D, van den Ende D, Mugele F.
    Electrophoresis; 2010 Jan; 31(3):563-9. PubMed ID: 20119966
    [Abstract] [Full Text] [Related]

  • 9. Modeling of combined electroosmotic and capillary flow in microchannels.
    Waghmare PR, Mitra SK.
    Anal Chim Acta; 2010 Mar 24; 663(2):117-26. PubMed ID: 20206000
    [Abstract] [Full Text] [Related]

  • 10. Surfactant-induced electroosmotic flow in microfluidic capillaries.
    Azadi G, Tripathi A.
    Electrophoresis; 2012 Jul 24; 33(14):2094-101. PubMed ID: 22821484
    [Abstract] [Full Text] [Related]

  • 11. Theory of multi-species electrophoresis in the presence of surface conduction.
    Bahga SS, Moza R, Khichar M.
    Proc Math Phys Eng Sci; 2016 Feb 24; 472(2186):20150661. PubMed ID: 27118893
    [Abstract] [Full Text] [Related]

  • 12. Electrokinetic flow and electric conduction of salt-free solutions in a capillary.
    Luo RH, Keh HJ.
    Electrophoresis; 2020 Sep 24; 41(16-17):1503-1508. PubMed ID: 32524627
    [Abstract] [Full Text] [Related]

  • 13. Surface instability of a thin electrolyte film undergoing coupled electroosmotic and electrophoretic flows in a microfluidic channel.
    Ray B, Reddy PD, Bandyopadhyay D, Joo SW, Sharma A, Qian S, Biswas G.
    Electrophoresis; 2011 Nov 24; 32(22):3257-67. PubMed ID: 22038622
    [Abstract] [Full Text] [Related]

  • 14. Scaling behavior in on-chip field-amplified sample stacking.
    Dubey K, Gupta A, Bahga SS.
    Electrophoresis; 2019 Mar 24; 40(5):730-739. PubMed ID: 30628102
    [Abstract] [Full Text] [Related]

  • 15. Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel.
    Zhao C, Yang C.
    Electrophoresis; 2013 Mar 24; 34(5):662-7. PubMed ID: 23229874
    [Abstract] [Full Text] [Related]

  • 16. Electroosmotic flow through a microparallel channel with 3D wall roughness.
    Chang L, Jian Y, Buren M, Sun Y.
    Electrophoresis; 2016 Feb 24; 37(3):482-92. PubMed ID: 26333852
    [Abstract] [Full Text] [Related]

  • 17. Electroosmotic flow changes due to interactions of background electrolyte counter-ions with polyethyleneimine coating in capillary zone electrophoresis of proteins.
    Spanilá M, Pazourek J, Havel J.
    J Sep Sci; 2006 Sep 24; 29(14):2234-40. PubMed ID: 17069254
    [Abstract] [Full Text] [Related]

  • 18. Electroosmotic flow velocity in DNA modified nanochannels.
    Li J, Li D.
    J Colloid Interface Sci; 2019 Oct 01; 553():31-39. PubMed ID: 31181468
    [Abstract] [Full Text] [Related]

  • 19. Determination of the Navier slip coefficient of microchannels exploiting the streaming potential.
    Park HM.
    Electrophoresis; 2012 Mar 01; 33(6):906-15. PubMed ID: 22528410
    [Abstract] [Full Text] [Related]

  • 20. Electroosmotic flow in microchannels with nanostructures.
    Yasui T, Kaji N, Mohamadi MR, Okamoto Y, Tokeshi M, Horiike Y, Baba Y.
    ACS Nano; 2011 Oct 25; 5(10):7775-80. PubMed ID: 21902222
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.