These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
144 related items for PubMed ID: 31670183
1. Modulatory influences on time-coding neurons in the ventral cochlear nucleus. Kuenzel T. Hear Res; 2019 Dec; 384():107824. PubMed ID: 31670183 [Abstract] [Full Text] [Related]
2. Small dendritic synapses enhance temporal coding in a model of cochlear nucleus bushy cells. Koert E, Kuenzel T. J Neurophysiol; 2021 Mar 01; 125(3):915-937. PubMed ID: 33471627 [Abstract] [Full Text] [Related]
3. The commissural pathway and cochlear nucleus bushy neurons: an in vivo intracellular investigation. Needham K, Paolini AG. Brain Res; 2007 Feb 23; 1134(1):113-21. PubMed ID: 17174943 [Abstract] [Full Text] [Related]
6. Inhibition shapes acoustic responsiveness in spherical bushy cells. Keine C, Rübsamen R. J Neurosci; 2015 Jun 03; 35(22):8579-92. PubMed ID: 26041924 [Abstract] [Full Text] [Related]
7. Interaction of excitation and inhibition in anteroventral cochlear nucleus neurons that receive large endbulb synaptic endings. Kopp-Scheinpflug C, Dehmel S, Dörrscheidt GJ, Rübsamen R. J Neurosci; 2002 Dec 15; 22(24):11004-18. PubMed ID: 12486196 [Abstract] [Full Text] [Related]
8. Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs. Koka K, Tollin DJ. Front Neural Circuits; 2014 Dec 15; 8():144. PubMed ID: 25565971 [Abstract] [Full Text] [Related]
9. Inhibitory properties underlying non-monotonic input-output relationship in low-frequency spherical bushy neurons of the gerbil. Kuenzel T, Nerlich J, Wagner H, Rübsamen R, Milenkovic I. Front Neural Circuits; 2015 Dec 15; 9():14. PubMed ID: 25873864 [Abstract] [Full Text] [Related]
10. Radiate and Planar Multipolar Neurons of the Mouse Anteroventral Cochlear Nucleus: Intrinsic Excitability and Characterization of their Auditory Nerve Input. Xie R, Manis PB. Front Neural Circuits; 2017 Dec 15; 11():77. PubMed ID: 29093666 [Abstract] [Full Text] [Related]
12. Perfidious synaptic transmission in the guinea-pig auditory brainstem. Stasiak A, Sayles M, Winter IM. PLoS One; 2018 Dec 15; 13(10):e0203712. PubMed ID: 30286113 [Abstract] [Full Text] [Related]
13. The ion channels and synapses responsible for the physiological diversity of mammalian lower brainstem auditory neurons. Leão RM. Hear Res; 2019 May 15; 376():33-46. PubMed ID: 30606624 [Abstract] [Full Text] [Related]
14. Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Cant NB, Benson CG. Brain Res Bull; 2003 Jun 15; 60(5-6):457-74. PubMed ID: 12787867 [Abstract] [Full Text] [Related]
18. Neuronal population model of globular bushy cells covering unit-to-unit variability. Ashida G, Heinermann HT, Kretzberg J. PLoS Comput Biol; 2019 Dec 15; 15(12):e1007563. PubMed ID: 31881018 [Abstract] [Full Text] [Related]
19. Auditory nerve fibers excite targets through synapses that vary in convergence, strength, and short-term plasticity. Cao XJ, Oertel D. J Neurophysiol; 2010 Nov 15; 104(5):2308-20. PubMed ID: 20739600 [Abstract] [Full Text] [Related]
20. Transmission of auditory sensory information decreases in rate and temporal precision at the endbulb of Held synapse during age-related hearing loss. Xie R. J Neurophysiol; 2016 Dec 01; 116(6):2695-2705. PubMed ID: 27683884 [Abstract] [Full Text] [Related] Page: [Next] [New Search]