These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
106 related items for PubMed ID: 31676341
1. Biocompatibility of glycerol monooleate nanoparticles as tested on inner ear cells. Simoni E, Valente F, Boge L, Eriksson M, Gentilin E, Candito M, Cazzador D, Astolfi L. Int J Pharm; 2019 Dec 15; 572():118788. PubMed ID: 31676341 [Abstract] [Full Text] [Related]
2. Evaluation of toxicity of glycerol monooleate nanoparticles on PC12 cell line. Valente F, Bysell H, Simoni E, Boge L, Eriksson M, Martini A, Astolfi L. Int J Pharm; 2018 Mar 25; 539(1-2):23-30. PubMed ID: 29366940 [Abstract] [Full Text] [Related]
3. Liquid Crystalline Nanoparticles Conjugated with Dexamethasone Prevent Cisplatin Ototoxicity In Vitro. Valente F, Simoni E, Gentilin E, Martini A, Zanoletti E, Marioni G, Nicolai P, Astolfi L. Int J Mol Sci; 2022 Nov 28; 23(23):. PubMed ID: 36499206 [Abstract] [Full Text] [Related]
4. Development and evaluation of liquid embolic agents based on liquid crystalline material of glyceryl monooleate. Du LR, Lu XJ, Guan HT, Yang YJ, Gu MJ, Zheng ZZ, Lv TS, Yan ZG, Song L, Zou YH, Fu NQ, Qi XR, Fan TY. Int J Pharm; 2014 Aug 25; 471(1-2):285-96. PubMed ID: 24858389 [Abstract] [Full Text] [Related]
5. Comprehensive and comparative studies on nanocytotoxicity of glyceryl monooleate- and phytantriol-based lipid liquid crystalline nanoparticles. Jagielski J, Przysiecka Ł, Flak D, Diak M, Pietralik-Molińska Z, Kozak M, Jurga S, Nowaczyk G. J Nanobiotechnology; 2021 Jun 03; 19(1):168. PubMed ID: 34082768 [Abstract] [Full Text] [Related]
6. Silica nanoparticle stabilization of liquid crystalline lipid dispersions: impact on enzymatic digestion and drug solubilization. Bhatt AB, Barnes TJ, Prestidge CA. Curr Drug Deliv; 2015 Jun 03; 12(1):47-55. PubMed ID: 25176029 [Abstract] [Full Text] [Related]
7. Lipid membranes exposed to dispersions of phytantriol and monoolein cubosomes: Langmuir monolayer and HeLa cell membrane studies. Jabłonowska E, Matyszewska D, Nazaruk E, Godlewska M, Gaweł D, Bilewicz R. Biochim Biophys Acta Gen Subj; 2021 Jan 03; 1865(1):129738. PubMed ID: 32956751 [Abstract] [Full Text] [Related]
8. Comparative studies on glycerol monooleate- and phytantriol-based cubosomes containing oridonin in vitro and in vivo. Shi X, Peng T, Huang Y, Mei L, Gu Y, Huang J, Han K, Li G, Hu C, Pan X, Wu C. Pharm Dev Technol; 2017 May 03; 22(3):322-329. PubMed ID: 26670780 [Abstract] [Full Text] [Related]
9. Uptake mechanism of furosemide-loaded pegylated nanoparticles by cochlear cell lines. Youm I, Youan BB. Hear Res; 2013 Oct 03; 304():7-19. PubMed ID: 23747541 [Abstract] [Full Text] [Related]
10. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: Improving preocular retention and ocular bioavailability. Gan L, Han S, Shen J, Zhu J, Zhu C, Zhang X, Gan Y. Int J Pharm; 2010 Aug 30; 396(1-2):179-87. PubMed ID: 20558263 [Abstract] [Full Text] [Related]
11. The effect of surface charge of glycerol monooleate-based nanoparticles on the round window membrane permeability and cochlear distribution. Liu H, Chen S, Zhou Y, Che X, Bao Z, Li S, Xu J. J Drug Target; 2013 Nov 30; 21(9):846-54. PubMed ID: 23944216 [Abstract] [Full Text] [Related]
12. Freeze-dried and re-hydrated liquid crystalline nanoparticles stabilized with disaccharides for drug-delivery of the plectasin derivative AP114 antimicrobial peptide. Boge L, Västberg A, Umerska A, Bysell H, Eriksson J, Edwards K, Millqvist-Fureby A, Andersson M. J Colloid Interface Sci; 2018 Jul 15; 522():126-135. PubMed ID: 29587194 [Abstract] [Full Text] [Related]
13. Interactions of lipid-based liquid crystalline nanoparticles with model and cell membranes. Barauskas J, Cervin C, Jankunec M, Spandyreva M, Ribokaite K, Tiberg F, Johnsson M. Int J Pharm; 2010 May 31; 391(1-2):284-91. PubMed ID: 20214966 [Abstract] [Full Text] [Related]
14. Glycerol monooleate-based nanocarriers for siRNA delivery in vitro. Zhen G, Hinton TM, Muir BW, Shi S, Tizard M, McLean KM, Hartley PG, Gunatillake P. Mol Pharm; 2012 Sep 04; 9(9):2450-7. PubMed ID: 22794355 [Abstract] [Full Text] [Related]
15. Metallo-Cubosomes: Zinc-Functionalized Cubic Nanoparticles for Therapeutic Nucleotide Delivery. Tajik-Ahmadabad B, Chollet L, White J, Separovic F, Polyzos A. Mol Pharm; 2019 Mar 04; 16(3):978-986. PubMed ID: 30648870 [Abstract] [Full Text] [Related]
16. Revisiting β-casein as a stabilizer for lipid liquid crystalline nanostructured particles. Zhai J, Waddington L, Wooster TJ, Aguilar MI, Boyd BJ. Langmuir; 2011 Dec 20; 27(24):14757-66. PubMed ID: 22026367 [Abstract] [Full Text] [Related]
17. Interaction between lamellar (vesicles) and nonlamellar lipid liquid-crystalline nanoparticles as studied by time-resolved small-angle X-ray diffraction. Vandoolaeghe P, Barauskas J, Johnsson M, Tiberg F, Nylander T. Langmuir; 2009 Apr 07; 25(7):3999-4008. PubMed ID: 19714888 [Abstract] [Full Text] [Related]
18. RNA expression induced by cisplatin in an organ of Corti-derived immortalized cell line. Previati M, Lanzoni I, Corbacella E, Magosso S, Giuffrè S, Francioso F, Arcelli D, Volinia S, Barbieri A, Hatzopoulos S, Capitani S, Martini A. Hear Res; 2004 Oct 07; 196(1-2):8-18. PubMed ID: 15464296 [Abstract] [Full Text] [Related]
19. Alpha-lipoic acid protects against cisplatin-induced ototoxicity via the regulation of MAPKs and proinflammatory cytokines. Kim J, Cho HJ, Sagong B, Kim SJ, Lee JT, So HS, Lee IK, Kim UK, Lee KY, Choo YS. Biochem Biophys Res Commun; 2014 Jun 27; 449(2):183-9. PubMed ID: 24796665 [Abstract] [Full Text] [Related]
20. Development of Cell-Based High-Throughput Chemical Screens for Protection Against Cisplatin-Induced Ototoxicity. Teitz T, Goktug AN, Chen T, Zuo J. Methods Mol Biol; 2016 Jun 27; 1427():419-30. PubMed ID: 27259939 [Abstract] [Full Text] [Related] Page: [Next] [New Search]