These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
160 related items for PubMed ID: 31677472
1. Optimization of the environmental performance of food diets in Peru combining linear programming and life cycle methods. Larrea-Gallegos G, Vázquez-Rowe I. Sci Total Environ; 2020 Jan 10; 699():134231. PubMed ID: 31677472 [Abstract] [Full Text] [Related]
2. Climate change mitigation opportunities based on carbon footprint estimates of dietary patterns in Peru. Vázquez-Rowe I, Larrea-Gallegos G, Villanueva-Rey P, Gilardino A. PLoS One; 2017 Jan 10; 12(11):e0188182. PubMed ID: 29145461 [Abstract] [Full Text] [Related]
3. Healthy diets with reduced environmental impact? - The greenhouse gas emissions of various diets adhering to the Dutch food based dietary guidelines. van de Kamp ME, van Dooren C, Hollander A, Geurts M, Brink EJ, van Rossum C, Biesbroek S, de Valk E, Toxopeus IB, Temme EHM. Food Res Int; 2018 Feb 10; 104():14-24. PubMed ID: 29433779 [Abstract] [Full Text] [Related]
4. Contribution of different life cycle stages to the greenhouse gas emissions associated with three balanced dietary patterns. Corrado S, Luzzani G, Trevisan M, Lamastra L. Sci Total Environ; 2019 Apr 10; 660():622-630. PubMed ID: 30641391 [Abstract] [Full Text] [Related]
5. Variations in greenhouse gas emissions of individual diets: Associations between the greenhouse gas emissions and nutrient intake in the United Kingdom. Rippin HL, Cade JE, Berrang-Ford L, Benton TG, Hancock N, Greenwood DC. PLoS One; 2021 Apr 10; 16(11):e0259418. PubMed ID: 34813623 [Abstract] [Full Text] [Related]
6. Environmental impacts of dietary shifts in India: A modelling study using nationally-representative data. Aleksandrowicz L, Green R, Joy EJM, Harris F, Hillier J, Vetter SH, Smith P, Kulkarni B, Dangour AD, Haines A. Environ Int; 2019 May 10; 126():207-215. PubMed ID: 30802638 [Abstract] [Full Text] [Related]
7. Reducing GHG emissions while improving diet quality: exploring the potential of reduced meat, cheese and alcoholic and soft drinks consumption at specific moments during the day. van de Kamp ME, Seves SM, Temme EHM. BMC Public Health; 2018 Feb 20; 18(1):264. PubMed ID: 29458352 [Abstract] [Full Text] [Related]
8. Organic quinoa (Chenopodium quinoa L.) production in Peru: Environmental hotspots and food security considerations using Life Cycle Assessment. Cancino-Espinoza E, Vázquez-Rowe I, Quispe I. Sci Total Environ; 2018 Oct 01; 637-638():221-232. PubMed ID: 29751305 [Abstract] [Full Text] [Related]
9. Assessment of diet-related GHG emissions using the environmental hourglass approach for the Mediterranean and new Nordic diets. Ulaszewska MM, Luzzani G, Pignatelli S, Capri E. Sci Total Environ; 2017 Jan 01; 574():829-836. PubMed ID: 27665443 [Abstract] [Full Text] [Related]
10. An energy- and nutrient-corrected functional unit to compare LCAs of diets. Batlle-Bayer L, Bala A, Lemaire E, Albertí J, García-Herrero I, Aldaco R, Fullana-I-Palmer P. Sci Total Environ; 2019 Jun 25; 671():175-179. PubMed ID: 30928747 [Abstract] [Full Text] [Related]
11. Greenhouse gas emissions reduction in different economic sectors: Mitigation measures, health co-benefits, knowledge gaps, and policy implications. Gao J, Hou H, Zhai Y, Woodward A, Vardoulakis S, Kovats S, Wilkinson P, Li L, Song X, Xu L, Meng B, Liu X, Wang J, Zhao J, Liu Q. Environ Pollut; 2018 Sep 25; 240():683-698. PubMed ID: 29775945 [Abstract] [Full Text] [Related]
12. Carbon trading, co-pollutants, and environmental equity: Evidence from California's cap-and-trade program (2011-2015). Cushing L, Blaustein-Rejto D, Wander M, Pastor M, Sadd J, Zhu A, Morello-Frosch R. PLoS Med; 2018 Jul 25; 15(7):e1002604. PubMed ID: 29990353 [Abstract] [Full Text] [Related]
13. The Climate and Nutritional Impact of Beef in Different Dietary Patterns in Denmark. Mogensen L, Hermansen JE, Trolle E. Foods; 2020 Aug 25; 9(9):. PubMed ID: 32854440 [Abstract] [Full Text] [Related]
14. Health effects of adopting low greenhouse gas emission diets in the UK. Milner J, Green R, Dangour AD, Haines A, Chalabi Z, Spadaro J, Markandya A, Wilkinson P. BMJ Open; 2015 Apr 30; 5(4):e007364. PubMed ID: 25929258 [Abstract] [Full Text] [Related]
15. Low-carbon electricity production through the implementation of photovoltaic panels in rooftops in urban environments: A case study for three cities in Peru. Bazán J, Rieradevall J, Gabarrell X, Vázquez-Rowe I. Sci Total Environ; 2018 May 01; 622-623():1448-1462. PubMed ID: 29890610 [Abstract] [Full Text] [Related]
16. Foods and dietary patterns that are healthy, low-cost, and environmentally sustainable: a case study of optimization modeling for New Zealand. Wilson N, Nghiem N, Ni Mhurchu C, Eyles H, Baker MG, Blakely T. PLoS One; 2013 May 01; 8(3):e59648. PubMed ID: 23544082 [Abstract] [Full Text] [Related]
17. Towards a sustainable diet combining economic, environmental and nutritional objectives. Donati M, Menozzi D, Zighetti C, Rosi A, Zinetti A, Scazzina F. Appetite; 2016 Nov 01; 106():48-57. PubMed ID: 26921487 [Abstract] [Full Text] [Related]
18. A half-century of production-phase greenhouse gas emissions from food loss & waste in the global food supply chain. Porter SD, Reay DS, Higgins P, Bomberg E. Sci Total Environ; 2016 Nov 15; 571():721-9. PubMed ID: 27432722 [Abstract] [Full Text] [Related]
19. Environmental impacts of dietary quality improvement in China. He P, Baiocchi G, Feng K, Hubacek K, Yu Y. J Environ Manage; 2019 Jun 15; 240():518-526. PubMed ID: 30999146 [Abstract] [Full Text] [Related]
20. Nutritional and greenhouse gas impacts of removing animals from US agriculture. White RR, Hall MB. Proc Natl Acad Sci U S A; 2017 Nov 28; 114(48):E10301-E10308. PubMed ID: 29133422 [Abstract] [Full Text] [Related] Page: [Next] [New Search]