These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


225 related items for PubMed ID: 31693347

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Bio-perfume guns: Antifungal volatile activity of Bacillus sp. LNXM12 against postharvest pathogen Botrytis cinerea in tomato and strawberry.
    Khan AR, Ali Q, Ayaz M, Bilal MS, Tariq H, El-Komy MH, Gu Q, Wu H, Vater J, Gao X.
    Pestic Biochem Physiol; 2024 Aug; 203():105995. PubMed ID: 39084769
    [Abstract] [Full Text] [Related]

  • 3. Promotion of tomato growth by the volatiles produced by the hypovirulent strain QT5-19 of the plant gray mold fungus Botrytis cinerea.
    Kamaruzzaman M, Wang Z, Wu M, Yang L, Han Y, Li G, Zhang J.
    Microbiol Res; 2021 Jun; 247():126731. PubMed ID: 33676312
    [Abstract] [Full Text] [Related]

  • 4. Methionine represses gray mold of tomato by keeping nitric oxide at an appropriate level via ethylene synthesis and signal transduction.
    Zhang Q, Zhang S, Wu B, Song Z, Shi J.
    Food Chem; 2024 Dec 15; 461():140942. PubMed ID: 39181046
    [Abstract] [Full Text] [Related]

  • 5. Mycofumigation of postharvest blueberries with volatile compounds from Trichoderma atroviride IC-11 is a promising tool to control rots caused by Botrytis cinerea.
    Bello F, Montironi ID, Medina MB, Munitz MS, Ferreira FV, Williman C, Vázquez D, Cariddi LN, Musumeci MA.
    Food Microbiol; 2022 Sep 15; 106():104040. PubMed ID: 35690443
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity.
    Harren K, Schumacher J, Tudzynski B.
    PLoS One; 2012 Sep 15; 7(7):e41761. PubMed ID: 22844520
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea.
    Shah P, Powell AL, Orlando R, Bergmann C, Gutierrez-Sanchez G.
    J Proteome Res; 2012 Apr 06; 11(4):2178-92. PubMed ID: 22364583
    [Abstract] [Full Text] [Related]

  • 12. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions?
    Chagué V, Danit LV, Siewers V, Schulze-Gronover C, Tudzynski P, Tudzynski B, Sharon A.
    Mol Plant Microbe Interact; 2006 Jan 06; 19(1):33-42. PubMed ID: 16404951
    [Abstract] [Full Text] [Related]

  • 13. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea.
    Díaz J, ten Have A, van Kan JA.
    Plant Physiol; 2002 Jul 06; 129(3):1341-51. PubMed ID: 12114587
    [Abstract] [Full Text] [Related]

  • 14. Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp.
    Fan QS, Lin HJ, Hu YJ, Jin J, Yan HH, Zhang RQ.
    Biotechnol Lett; 2024 Oct 06; 46(5):751-766. PubMed ID: 38811460
    [Abstract] [Full Text] [Related]

  • 15. Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca2+ signalling pathways.
    Kilani J, Davanture M, Simon A, Zivy M, Fillinger S.
    J Proteomics; 2020 Feb 10; 212():103580. PubMed ID: 31733416
    [Abstract] [Full Text] [Related]

  • 16. Different signalling pathways involving a Galpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia.
    Doehlemann G, Berndt P, Hahn M.
    Mol Microbiol; 2006 Feb 10; 59(3):821-35. PubMed ID: 16420354
    [Abstract] [Full Text] [Related]

  • 17. Release of lipoxygenase products and monoterpenes by tomato plants as an indicator of Botrytis cinerea-induced stress.
    Jansen RM, Miebach M, Kleist E, van Henten EJ, Wildt J.
    Plant Biol (Stuttg); 2009 Nov 10; 11(6):859-68. PubMed ID: 19796363
    [Abstract] [Full Text] [Related]

  • 18. Effects of linalool on Botrytis cinerea growth and control of tomato gray mold.
    Wang QF, Wang XY, Li HS, Yang XY, Zhang RM, Gong B, Li XM, Shi QH.
    Ying Yong Sheng Tai Xue Bao; 2023 Jan 10; 34(1):213-220. PubMed ID: 36799396
    [Abstract] [Full Text] [Related]

  • 19. Effect of methyl salicylate in combination with 1-methylcyclopropene on postharvest quality and decay caused by Botrytis cinerea in tomato fruit.
    Min D, Li F, Zhang X, Shu P, Cui X, Dong L, Ren C, Meng D, Li J.
    J Sci Food Agric; 2018 Aug 10; 98(10):3815-3822. PubMed ID: 29352462
    [Abstract] [Full Text] [Related]

  • 20. Inhibition activity of tomato endophyte Bacillus velezensis FQ-G3 against postharvest Botrytis cinerea.
    Feng B, Li P, Chen D, Ding C.
    Folia Microbiol (Praha); 2024 Apr 10; 69(2):361-371. PubMed ID: 37436591
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.