These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


207 related items for PubMed ID: 31698298

  • 1. Effects of long-term paddy rice cultivation on soil arsenic speciation.
    Yang PT, Hashimoto Y, Wu WJ, Huang JH, Chiang PN, Wang SL.
    J Environ Manage; 2020 Jan 15; 254():109768. PubMed ID: 31698298
    [Abstract] [Full Text] [Related]

  • 2. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy.
    Fan JX, Wang YJ, Liu C, Wang LH, Yang K, Zhou DM, Li W, Sparks DL.
    J Hazard Mater; 2014 Aug 30; 279():212-9. PubMed ID: 25064258
    [Abstract] [Full Text] [Related]

  • 3. Partitioning and potential mobilization of aluminum, arsenic, iron, and heavy metals in tropical active and post-active acid sulfate soils: Influence of long-term paddy rice cultivation.
    Sukitprapanon T, Suddhiprakarn A, Kheoruenromne I, Gilkes RJ.
    Chemosphere; 2018 Apr 30; 197():691-702. PubMed ID: 29407833
    [Abstract] [Full Text] [Related]

  • 4. Changes in arsenic mobility and speciation across a 2000-year-old paddy soil chronosequence.
    León Ninin JM, Muehe EM, Kölbl A, Higa Mori A, Nicol A, Gilfedder B, Pausch J, Urbanski L, Lueders T, Planer-Friedrich B.
    Sci Total Environ; 2024 Jan 15; 908():168351. PubMed ID: 37939938
    [Abstract] [Full Text] [Related]

  • 5. Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors - A review.
    Kumarathilaka P, Seneweera S, Meharg A, Bundschuh J.
    Water Res; 2018 Sep 01; 140():403-414. PubMed ID: 29775934
    [Abstract] [Full Text] [Related]

  • 6. Temporal transformation of indium speciation in rice paddy soils and spatial distribution of indium in rice rhizosphere.
    Chang HF, Yang PT, Hashimoto Y, Yeh KC, Wang SL.
    Environ Pollut; 2023 Jun 01; 326():121473. PubMed ID: 36958661
    [Abstract] [Full Text] [Related]

  • 7. Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix.
    Yamaguchi N, Ohkura T, Takahashi Y, Maejima Y, Arao T.
    Environ Sci Technol; 2014 Jun 01; 48(3):1549-56. PubMed ID: 24384039
    [Abstract] [Full Text] [Related]

  • 8. Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations.
    Hashimoto Y, Kanke Y.
    Environ Pollut; 2018 Jul 01; 238():617-623. PubMed ID: 29609173
    [Abstract] [Full Text] [Related]

  • 9. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system.
    Lin Z, Wang X, Wu X, Liu D, Yin Y, Zhang Y, Xiao S, Xing B.
    Environ Pollut; 2018 Dec 01; 243(Pt B):1015-1025. PubMed ID: 30248601
    [Abstract] [Full Text] [Related]

  • 10. Evolution of As speciation with depth in a soil profile with a geothermal As origin.
    Yang PT, Wu WJ, Hashimoto Y, Huang JH, Huang ST, Hseu ZY, Wang SL.
    Chemosphere; 2020 Feb 01; 241():124956. PubMed ID: 31605996
    [Abstract] [Full Text] [Related]

  • 11. Mitigating arsenic accumulation in rice (Oryza sativa L.) from typical arsenic contaminated paddy soil of southern China using nanostructured α-MnO2: Pot experiment and field application.
    Li B, Zhou S, Wei D, Long J, Peng L, Tie B, Williams PN, Lei M.
    Sci Total Environ; 2019 Feb 10; 650(Pt 1):546-556. PubMed ID: 30205344
    [Abstract] [Full Text] [Related]

  • 12. Mobility of arsenic in the growth media of rice plants (Oryza sativa subsp. japonica. 'Koshihikari') with exposure to copper oxide nanoparticles in a life-cycle greenhouse study.
    Liu J, Li J, Wolfe K, Perrotta B, Cobb GP.
    Sci Total Environ; 2021 Jun 20; 774():145620. PubMed ID: 33609822
    [Abstract] [Full Text] [Related]

  • 13. Dynamics of Dimethylated Monothioarsenate (DMMTA) in Paddy Soils and Its Accumulation in Rice Grains.
    Dai J, Chen C, Gao AX, Tang Z, Kopittke PM, Zhao FJ, Wang P.
    Environ Sci Technol; 2021 Jul 06; 55(13):8665-8674. PubMed ID: 34110124
    [Abstract] [Full Text] [Related]

  • 14. Factors affecting paddy soil arsenic concentration in Bangladesh: prediction and uncertainty of geostatistical risk mapping.
    Ahmed ZU, Panaullah GM, DeGloria SD, Duxbury JM.
    Sci Total Environ; 2011 Dec 15; 412-413():324-35. PubMed ID: 22055452
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption.
    Meharg AA, Rahman MM.
    Environ Sci Technol; 2003 Jan 15; 37(2):229-34. PubMed ID: 12564892
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Chemical speciation and rice uptake of soil molybdenum-Investigation with X-ray absorption spectroscopy and isotope fractionation.
    Yang PT, Liang YH, Lee DC, Wang SL.
    Sci Total Environ; 2024 Nov 01; 949():175141. PubMed ID: 39094649
    [Abstract] [Full Text] [Related]

  • 20. Arsenic behavior across soil-water interfaces in paddy soils: Coupling, decoupling and speciation.
    Yuan ZF, Gustave W, Boyle J, Sekar R, Bridge J, Ren Y, Tang X, Guo B, Chen Z.
    Chemosphere; 2021 Apr 01; 269():128713. PubMed ID: 33162156
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.