These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa. Zhao F, Shi R, Ma F, Han S, Zhang Y. Microb Cell Fact; 2018 Mar 09; 17(1):39. PubMed ID: 29523151 [Abstract] [Full Text] [Related]
4. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Lotfabad TB, Abassi H, Ahmadkhaniha R, Roostaazad R, Masoomi F, Zahiri HS, Ahmadian G, Vali H, Noghabi KA. Colloids Surf B Biointerfaces; 2010 Dec 01; 81(2):397-405. PubMed ID: 20732795 [Abstract] [Full Text] [Related]
5. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant. Varjani SJ, Upasani VN. Bioresour Technol; 2016 Dec 01; 221():510-516. PubMed ID: 27677153 [Abstract] [Full Text] [Related]
6. High mono-rhamnolipids production by a novel isolate Pseudomonas aeruginosa LP20 from oily sludge: characterization, optimization, and potential application. Li C, Wang Y, Zhou L, Cui Q, Sun W, Yang J, Su H, Zhao F. Lett Appl Microbiol; 2024 Feb 01; 77(2):. PubMed ID: 38366661 [Abstract] [Full Text] [Related]
7. Chemical characterization and physical and biological activities of rhamnolipids produced by Pseudomonas aeruginosa BN10. Christova N, Tuleva B, Cohenb R, Ivanova G, Stoevd G, Stoilova-Disheva M, Stoineva I. Z Naturforsch C J Biosci; 2011 Feb 01; 66(7-8):394-402. PubMed ID: 21950164 [Abstract] [Full Text] [Related]
8. High-Yield Di-Rhamnolipid Production by Pseudomonas aeruginosa YM4 and its Potential Application in MEOR. Li Z, Zhang Y, Lin J, Wang W, Li S. Molecules; 2019 Apr 11; 24(7):. PubMed ID: 30979013 [Abstract] [Full Text] [Related]
9. Characterization of rhamnolipid biosurfactants produced by recombinant Pseudomonas aeruginosa strain DAB with removal of crude oil. He C, Dong W, Li J, Li Y, Huang C, Ma Y. Biotechnol Lett; 2017 Sep 11; 39(9):1381-1388. PubMed ID: 28600649 [Abstract] [Full Text] [Related]
10. The effect of carbon, nitrogen and iron ions on mono-rhamnolipid production and rhamnolipid synthesis gene expression by Pseudomonas aeruginosa ATCC 15442. Shatila F, Diallo MM, Şahar U, Ozdemir G, Yalçın HT. Arch Microbiol; 2020 Aug 11; 202(6):1407-1417. PubMed ID: 32173773 [Abstract] [Full Text] [Related]
11. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Gudiña EJ, Rodrigues AI, Alves E, Domingues MR, Teixeira JA, Rodrigues LR. Bioresour Technol; 2015 Feb 11; 177():87-93. PubMed ID: 25479398 [Abstract] [Full Text] [Related]
12. Enhanced production of mono-rhamnolipid in Pseudomonas aeruginosa and application potential in agriculture and petroleum industry. Zhao F, Yuan M, Lei L, Li C, Xu X. Bioresour Technol; 2021 Mar 11; 323():124605. PubMed ID: 33388600 [Abstract] [Full Text] [Related]
13. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells. Bagheri Lotfabad T, Ebadipour N, Roostaazad R, Partovi M, Bahmaei M. Colloids Surf B Biointerfaces; 2017 Apr 01; 152():159-168. PubMed ID: 28110037 [Abstract] [Full Text] [Related]
14. Structural characterization of rhamnolipid produced by Pseudomonas aeruginosa strain FIN2 isolated from oil reservoir water. Liu JF, Wu G, Yang SZ, Mu BZ. World J Microbiol Biotechnol; 2014 May 01; 30(5):1473-84. PubMed ID: 24297330 [Abstract] [Full Text] [Related]
15. Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol. Saikia RR, Deka S, Deka M, Sarma H. J Basic Microbiol; 2012 Aug 01; 52(4):446-57. PubMed ID: 22144225 [Abstract] [Full Text] [Related]
16. Production of rhamnolipid biosurfactants by Pseudomonas aeruginosa DS10-129 in a microfluidic bioreactor. Rahman PK, Pasirayi G, Auger V, Ali Z. Biotechnol Appl Biochem; 2010 Feb 02; 55(1):45-52. PubMed ID: 19958287 [Abstract] [Full Text] [Related]
17. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. George S, Jayachandran K. J Appl Microbiol; 2013 Feb 02; 114(2):373-83. PubMed ID: 23164038 [Abstract] [Full Text] [Related]
18. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications. Rocha VAL, de Castilho LVA, de Castro RPV, Teixeira DB, Magalhães AV, Gomez JGC, Freire DMG. Biotechnol Prog; 2020 Jul 02; 36(4):e2981. PubMed ID: 32083814 [Abstract] [Full Text] [Related]
19. High Di-rhamnolipid Production Using Pseudomonas aeruginosa KT1115, Separation of Mono/Di-rhamnolipids, and Evaluation of Their Properties. Zhou J, Xue R, Liu S, Xu N, Xin F, Zhang W, Jiang M, Dong W. Front Bioeng Biotechnol; 2019 Jul 02; 7():245. PubMed ID: 31696112 [Abstract] [Full Text] [Related]
20. Effect of Mono and Di-rhamnolipids on Biofilms Pre-formed by Bacillus subtilis BBK006. De Rienzo MA, Martin PJ. Curr Microbiol; 2016 Aug 02; 73(2):183-9. PubMed ID: 27113589 [Abstract] [Full Text] [Related] Page: [Next] [New Search]