These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


438 related items for PubMed ID: 31721338

  • 1. Cross-docking benchmark for automated pose and ranking prediction of ligand binding.
    Wierbowski SD, Wingert BM, Zheng J, Camacho CJ.
    Protein Sci; 2020 Jan; 29(1):298-305. PubMed ID: 31721338
    [Abstract] [Full Text] [Related]

  • 2. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM, Mahapatra NR.
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [Abstract] [Full Text] [Related]

  • 3. CSAR Benchmark of Flexible MedusaDock in Affinity Prediction and Nativelike Binding Pose Selection.
    Nedumpully-Govindan P, Jemec DB, Ding F.
    J Chem Inf Model; 2016 Jun 27; 56(6):1042-52. PubMed ID: 26252196
    [Abstract] [Full Text] [Related]

  • 4. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark.
    Ding F, Dokholyan NV.
    J Chem Inf Model; 2013 Aug 26; 53(8):1871-9. PubMed ID: 23237273
    [Abstract] [Full Text] [Related]

  • 5. Machine learning in computational docking.
    Khamis MA, Gomaa W, Ahmed WF.
    Artif Intell Med; 2015 Mar 26; 63(3):135-52. PubMed ID: 25724101
    [Abstract] [Full Text] [Related]

  • 6. Docking and Scoring with Target-Specific Pose Classifier Succeeds in Native-Like Pose Identification But Not Binding Affinity Prediction in the CSAR 2014 Benchmark Exercise.
    Politi R, Convertino M, Popov K, Dokholyan NV, Tropsha A.
    J Chem Inf Model; 2016 Jun 27; 56(6):1032-41. PubMed ID: 27050767
    [Abstract] [Full Text] [Related]

  • 7. Target-specific native/decoy pose classifier improves the accuracy of ligand ranking in the CSAR 2013 benchmark.
    Fourches D, Politi R, Tropsha A.
    J Chem Inf Model; 2015 Jan 26; 55(1):63-71. PubMed ID: 25521713
    [Abstract] [Full Text] [Related]

  • 8. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M.
    J Chem Inf Model; 2013 Nov 25; 53(11):3097-112. PubMed ID: 24171431
    [Abstract] [Full Text] [Related]

  • 9. Continuous Evaluation of Ligand Protein Predictions: A Weekly Community Challenge for Drug Docking.
    Wagner JR, Churas CP, Liu S, Swift RV, Chiu M, Shao C, Feher VA, Burley SK, Gilson MK, Amaro RE.
    Structure; 2019 Aug 06; 27(8):1326-1335.e4. PubMed ID: 31257108
    [Abstract] [Full Text] [Related]

  • 10. HSYMDOCK: a docking web server for predicting the structure of protein homo-oligomers with Cn or Dn symmetry.
    Yan Y, Tao H, Huang SY.
    Nucleic Acids Res; 2018 Jul 02; 46(W1):W423-W431. PubMed ID: 29846641
    [Abstract] [Full Text] [Related]

  • 11. istar: a web platform for large-scale protein-ligand docking.
    Li H, Leung KS, Ballester PJ, Wong MH.
    PLoS One; 2014 Jul 02; 9(1):e85678. PubMed ID: 24475049
    [Abstract] [Full Text] [Related]

  • 12. HPEPDOCK: a web server for blind peptide-protein docking based on a hierarchical algorithm.
    Zhou P, Jin B, Li H, Huang SY.
    Nucleic Acids Res; 2018 Jul 02; 46(W1):W443-W450. PubMed ID: 29746661
    [Abstract] [Full Text] [Related]

  • 13. farPPI: a webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB(GB)SA methods.
    Wang Z, Wang X, Li Y, Lei T, Wang E, Li D, Kang Y, Zhu F, Hou T.
    Bioinformatics; 2019 May 15; 35(10):1777-1779. PubMed ID: 30329012
    [Abstract] [Full Text] [Related]

  • 14. HarmonyDOCK: the structural analysis of poses in protein-ligand docking.
    Plewczynski D, Philips A, Von Grotthuss M, Rychlewski L, Ginalski K.
    J Comput Biol; 2014 Mar 15; 21(3):247-56. PubMed ID: 21091053
    [Abstract] [Full Text] [Related]

  • 15. COACH-D: improved protein-ligand binding sites prediction with refined ligand-binding poses through molecular docking.
    Wu Q, Peng Z, Zhang Y, Yang J.
    Nucleic Acids Res; 2018 Jul 02; 46(W1):W438-W442. PubMed ID: 29846643
    [Abstract] [Full Text] [Related]

  • 16. Highly Flexible Ligand Docking: Benchmarking of the DockThor Program on the LEADS-PEP Protein-Peptide Data Set.
    Santos KB, Guedes IA, Karl ALM, Dardenne LE.
    J Chem Inf Model; 2020 Feb 24; 60(2):667-683. PubMed ID: 31922754
    [Abstract] [Full Text] [Related]

  • 17. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA.
    Greenidge PA, Kramer C, Mozziconacci JC, Sherman W.
    J Chem Inf Model; 2014 Oct 27; 54(10):2697-717. PubMed ID: 25266271
    [Abstract] [Full Text] [Related]

  • 18. CSAR Benchmark Exercise 2013: Evaluation of Results from a Combined Computational Protein Design, Docking, and Scoring/Ranking Challenge.
    Smith RD, Damm-Ganamet KL, Dunbar JB, Ahmed A, Chinnaswamy K, Delproposto JE, Kubish GM, Tinberg CE, Khare SD, Dou J, Doyle L, Stuckey JA, Baker D, Carlson HA.
    J Chem Inf Model; 2016 Jun 27; 56(6):1022-31. PubMed ID: 26419257
    [Abstract] [Full Text] [Related]

  • 19. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results.
    Li Y, Han L, Liu Z, Wang R.
    J Chem Inf Model; 2014 Jun 23; 54(6):1717-36. PubMed ID: 24708446
    [Abstract] [Full Text] [Related]

  • 20. Combining self- and cross-docking as benchmark tools: the performance of DockBench in the D3R Grand Challenge 2.
    Salmaso V, Sturlese M, Cuzzolin A, Moro S.
    J Comput Aided Mol Des; 2018 Jan 23; 32(1):251-264. PubMed ID: 28840418
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.