These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


177 related items for PubMed ID: 31721357

  • 21. A Remote Secondary Binding Pocket Promotes Heteromultivalent Targeting of DC-SIGN.
    Wawrzinek R, Wamhoff EC, Lefebre J, Rentzsch M, Bachem G, Domeniconi G, Schulze J, Fuchsberger FF, Zhang H, Modenutti C, Schnirch L, Marti MA, Schwardt O, Bräutigam M, Guberman M, Hauck D, Seeberger PH, Seitz O, Titz A, Ernst B, Rademacher C.
    J Am Chem Soc; 2021 Nov 17; 143(45):18977-18988. PubMed ID: 34748320
    [Abstract] [Full Text] [Related]

  • 22. Sequence-defined glycopolymer segments presenting mannose: synthesis and lectin binding affinity.
    Ponader D, Wojcik F, Beceren-Braun F, Dernedde J, Hartmann L.
    Biomacromolecules; 2012 Jun 11; 13(6):1845-52. PubMed ID: 22483345
    [Abstract] [Full Text] [Related]

  • 23. Pichia pastoris-produced mucin-type fusion proteins with multivalent O-glycan substitution as targeting molecules for mannose-specific receptors of the immune system.
    Gustafsson A, Sjöblom M, Strindelius L, Johansson T, Fleckenstein T, Chatzissavidou N, Lindberg L, Angström J, Rova U, Holgersson J.
    Glycobiology; 2011 Aug 11; 21(8):1071-86. PubMed ID: 21474492
    [Abstract] [Full Text] [Related]

  • 24. Immune Effect Regulated by the Chain Length: Interaction between Immune Cell Surface Receptors and Synthetic Glycopolymers.
    Feng R, Zhu L, Heng X, Chen G, Chen H.
    ACS Appl Mater Interfaces; 2021 Aug 11; 13(31):36859-36867. PubMed ID: 34333963
    [Abstract] [Full Text] [Related]

  • 25. Saturation transfer difference (STD) NMR spectroscopy characterization of dual binding mode of a mannose disaccharide to DC-SIGN.
    Angulo J, Díaz I, Reina JJ, Tabarani G, Fieschi F, Rojo J, Nieto PM.
    Chembiochem; 2008 Sep 22; 9(14):2225-7. PubMed ID: 18720494
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. ROMP-based Glycopolymers with High Affinity for Mannose-Binding Lectins.
    Gonnot C, Scalabrini M, Roubinet B, Ziane C, Boeda F, Deniaud D, Landemarre L, Gouin SG, Fontaine L, Montembault V.
    Biomacromolecules; 2023 Aug 14; 24(8):3689-3699. PubMed ID: 37471408
    [Abstract] [Full Text] [Related]

  • 31. High and low affinity carbohydrate ligands revealed for murine SIGN-R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN-R3 and langerin.
    Galustian C, Park CG, Chai W, Kiso M, Bruening SA, Kang YS, Steinman RM, Feizi T.
    Int Immunol; 2004 Jun 14; 16(6):853-66. PubMed ID: 15136555
    [Abstract] [Full Text] [Related]

  • 32. Mannose-Functionalized Nanoscaffolds for Targeted Delivery in Biomedical Applications.
    Hu J, Wei P, Seeberger PH, Yin J.
    Chem Asian J; 2018 Nov 16; 13(22):3448-3459. PubMed ID: 30251341
    [Abstract] [Full Text] [Related]

  • 33. Controlling the lectin recognition of glycopolymers via distance arrangement of sugar blocks.
    Jono K, Nagao M, Oh T, Sonoda S, Hoshino Y, Miura Y.
    Chem Commun (Camb); 2017 Dec 19; 54(1):82-85. PubMed ID: 29211064
    [Abstract] [Full Text] [Related]

  • 34. Super-resolution imaging of C-type lectin and influenza hemagglutinin nanodomains on plasma membranes using blink microscopy.
    Itano MS, Steinhauer C, Schmied JJ, Forthmann C, Liu P, Neumann AK, Thompson NL, Tinnefeld P, Jacobson K.
    Biophys J; 2012 Apr 04; 102(7):1534-42. PubMed ID: 22500753
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. High doses of recombinant mannan-binding lectin inhibit the binding of influenza A(H1N1)pdm09 virus with cells expressing DC-SIGN.
    Yu L, Shang S, Tao R, Wang C, Zhang L, Peng H, Chen Y.
    APMIS; 2017 Jul 04; 125(7):655-664. PubMed ID: 28493491
    [Abstract] [Full Text] [Related]

  • 39. DC-SIGN and influenza hemagglutinin dynamics in plasma membrane microdomains are markedly different.
    Itano MS, Neumann AK, Liu P, Zhang F, Gratton E, Parak WJ, Thompson NL, Jacobson K.
    Biophys J; 2011 Jun 08; 100(11):2662-70. PubMed ID: 21641311
    [Abstract] [Full Text] [Related]

  • 40. Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization.
    Ji X, Olinger GG, Aris S, Chen Y, Gewurz H, Spear GT.
    J Gen Virol; 2005 Sep 08; 86(Pt 9):2535-2542. PubMed ID: 16099912
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.