These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


191 related items for PubMed ID: 31722220

  • 1. Investigation of Proteomic and Phosphoproteomic Responses to Signaling Network Perturbations Reveals Functional Pathway Organizations in Yeast.
    Li J, Paulo JA, Nusinow DP, Huttlin EL, Gygi SP.
    Cell Rep; 2019 Nov 12; 29(7):2092-2104.e4. PubMed ID: 31722220
    [Abstract] [Full Text] [Related]

  • 2. Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast.
    Bodenmiller B, Wanka S, Kraft C, Urban J, Campbell D, Pedrioli PG, Gerrits B, Picotti P, Lam H, Vitek O, Brusniak MY, Roschitzki B, Zhang C, Shokat KM, Schlapbach R, Colman-Lerner A, Nolan GP, Nesvizhskii AI, Peter M, Loewith R, von Mering C, Aebersold R.
    Sci Signal; 2010 Dec 21; 3(153):rs4. PubMed ID: 21177495
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. The regulatory landscape of the yeast phosphoproteome.
    Leutert M, Barente AS, Fukuda NK, Rodriguez-Mias RA, Villén J.
    Nat Struct Mol Biol; 2023 Nov 21; 30(11):1761-1773. PubMed ID: 37845410
    [Abstract] [Full Text] [Related]

  • 5. Global analysis of phosphoproteome regulation by the Ser/Thr phosphatase Ppt1 in Saccharomyces cerevisiae.
    Schreiber TB, Mäusbacher N, Soroka J, Wandinger SK, Buchner J, Daub H.
    J Proteome Res; 2012 Apr 06; 11(4):2397-408. PubMed ID: 22369663
    [Abstract] [Full Text] [Related]

  • 6. Dynamic phosphoproteomics reveals TORC1-dependent regulation of yeast nucleotide and amino acid biosynthesis.
    Oliveira AP, Ludwig C, Zampieri M, Weisser H, Aebersold R, Sauer U.
    Sci Signal; 2015 Apr 28; 8(374):rs4. PubMed ID: 25921291
    [Abstract] [Full Text] [Related]

  • 7. Large-scale functional analysis of the roles of phosphorylation in yeast metabolic pathways.
    Schulz JC, Zampieri M, Wanka S, von Mering C, Sauer U.
    Sci Signal; 2014 Nov 25; 7(353):rs6. PubMed ID: 25429078
    [Abstract] [Full Text] [Related]

  • 8. Combined Enrichment/Enzymatic Approach To Study Tightly Clustered Multisite Phosphorylation on Ser-Rich Domains.
    Kanshin E, Pascariu M, Tyers M, D'Amours D, Thibault P.
    J Proteome Res; 2018 Sep 07; 17(9):3050-3060. PubMed ID: 30063138
    [Abstract] [Full Text] [Related]

  • 9. Proteomic and phosphoproteomic analyses of yeast reveal the global cellular response to sphingolipid depletion.
    Fröhlich F, Olson DK, Christiano R, Farese RV, Walther TC.
    Proteomics; 2016 Nov 07; 16(21):2759-2763. PubMed ID: 27717283
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. A comprehensive proteomic and phosphoproteomic analysis of yeast deletion mutants of 14-3-3 orthologs and associated effects of rapamycin.
    Paulo JA, Gygi SP.
    Proteomics; 2015 Jan 07; 15(2-3):474-86. PubMed ID: 25315811
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Multiplexed proteome profiling of carbon source perturbations in two yeast species with SL-SP3-TMT.
    Paulo JA, Navarrete-Perea J, Gygi SP.
    J Proteomics; 2020 Jan 06; 210():103531. PubMed ID: 31626996
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Quantitative Phosphoproteomic Analysis Reveals the Regulatory Networks of Elovl6 on Lipid and Glucose Metabolism in Zebrafish.
    Wang X, Sun S, Cao X, Gao J.
    Int J Mol Sci; 2020 Apr 19; 21(8):. PubMed ID: 32325903
    [Abstract] [Full Text] [Related]

  • 16. Phosphoproteomic analysis identifies proteins involved in transcription-coupled mRNA decay as targets of Snf1 signaling.
    Braun KA, Vaga S, Dombek KM, Fang F, Palmisano S, Aebersold R, Young ET.
    Sci Signal; 2014 Jul 08; 7(333):ra64. PubMed ID: 25005228
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Protein phosphatases of Saccharomyces cerevisiae.
    Offley SR, Schmidt MC.
    Curr Genet; 2019 Feb 08; 65(1):41-55. PubMed ID: 30225534
    [Abstract] [Full Text] [Related]

  • 19. Identification of a novel Ser/Thr protein phosphatase Ppq1 as a negative regulator of mating MAP kinase pathway in Saccharomyces cerevisiae.
    Shim E, Park SH.
    Biochem Biophys Res Commun; 2014 Jan 03; 443(1):252-8. PubMed ID: 24309106
    [Abstract] [Full Text] [Related]

  • 20. Functional organization of the S. cerevisiae phosphorylation network.
    Fiedler D, Braberg H, Mehta M, Chechik G, Cagney G, Mukherjee P, Silva AC, Shales M, Collins SR, van Wageningen S, Kemmeren P, Holstege FC, Weissman JS, Keogh MC, Koller D, Shokat KM, Krogan NJ.
    Cell; 2009 Mar 06; 136(5):952-63. PubMed ID: 19269370
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.