These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


191 related items for PubMed ID: 31722220

  • 21. Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae.
    Renvoisé M, Bonhomme L, Davanture M, Valot B, Zivy M, Lemaire C.
    J Proteomics; 2014 Jun 25; 106():140-50. PubMed ID: 24769239
    [Abstract] [Full Text] [Related]

  • 22. Network inference reveals novel connections in pathways regulating growth and defense in the yeast salt response.
    MacGilvray ME, Shishkova E, Chasman D, Place M, Gitter A, Coon JJ, Gasch AP.
    PLoS Comput Biol; 2018 May 25; 13(5):e1006088. PubMed ID: 29738528
    [Abstract] [Full Text] [Related]

  • 23. Reconstruction of global regulatory network from signaling to cellular functions using phosphoproteomic data.
    Kawata K, Yugi K, Hatano A, Kokaji T, Tomizawa Y, Fujii M, Uda S, Kubota H, Matsumoto M, Nakayama KI, Kuroda S.
    Genes Cells; 2019 Jan 25; 24(1):82-93. PubMed ID: 30417516
    [Abstract] [Full Text] [Related]

  • 24. Comparative phosphoproteomic analysis of intestinal phosphorylated proteins in active versus aestivating sea cucumbers.
    Chen M, Zhu A, Storey KB.
    J Proteomics; 2016 Mar 01; 135():141-150. PubMed ID: 26385000
    [Abstract] [Full Text] [Related]

  • 25. Integrating proteomic and phosphoproteomic data for pathway analysis in breast cancer.
    Ren J, Wang B, Li J.
    BMC Syst Biol; 2018 Dec 21; 12(Suppl 8):130. PubMed ID: 30577793
    [Abstract] [Full Text] [Related]

  • 26. Label-free quantitative phosphoproteomic analysis reveals differentially regulated proteins and pathway in PRRSV-infected pulmonary alveolar macrophages.
    Luo R, Fang L, Jin H, Wang D, An K, Xu N, Chen H, Xiao S.
    J Proteome Res; 2014 Mar 07; 13(3):1270-80. PubMed ID: 24533505
    [Abstract] [Full Text] [Related]

  • 27. The calcineurin signaling network evolves via conserved kinase-phosphatase modules that transcend substrate identity.
    Goldman A, Roy J, Bodenmiller B, Wanka S, Landry CR, Aebersold R, Cyert MS.
    Mol Cell; 2014 Aug 07; 55(3):422-435. PubMed ID: 24930733
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Profiling Yeast Deletion Strains Using Sample Multiplexing and Network-Based Analyses.
    Liu X, Li J, Gygi SP, Paulo JA.
    J Proteome Res; 2022 Jun 03; 21(6):1525-1536. PubMed ID: 35544774
    [Abstract] [Full Text] [Related]

  • 31. Identification of Cdk targets that control cytokinesis.
    Kuilman T, Maiolica A, Godfrey M, Scheidel N, Aebersold R, Uhlmann F.
    EMBO J; 2015 Jan 02; 34(1):81-96. PubMed ID: 25371407
    [Abstract] [Full Text] [Related]

  • 32. SILAC-based phosphoproteomics reveals new PP2A-Cdc55-regulated processes in budding yeast.
    Baro B, Játiva S, Calabria I, Vinaixa J, Bech-Serra JJ, de LaTorre C, Rodrigues J, Hernáez ML, Gil C, Barceló-Batllori S, Larsen MR, Queralt E.
    Gigascience; 2018 May 01; 7(5):. PubMed ID: 29688323
    [Abstract] [Full Text] [Related]

  • 33. Quantitative Phosphoproteomics Reveals System-Wide Phosphorylation Network Altered by Spry in Mouse Mammary Stromal Fibroblasts.
    Shi T, Yao L, Han Y, Hao P, Lu P.
    Int J Mol Sci; 2019 Oct 30; 20(21):. PubMed ID: 31671542
    [Abstract] [Full Text] [Related]

  • 34. Phosphorylation-Mediated Molecular Pathway Changes in Human Pituitary Neuroendocrine Tumors Identified by Quantitative Phosphoproteomics.
    Li J, Wen S, Li B, Li N, Zhan X.
    Cells; 2021 Aug 27; 10(9):. PubMed ID: 34571875
    [Abstract] [Full Text] [Related]

  • 35. PhosphoGRID: a database of experimentally verified in vivo protein phosphorylation sites from the budding yeast Saccharomyces cerevisiae.
    Stark C, Su TC, Breitkreutz A, Lourenco P, Dahabieh M, Breitkreutz BJ, Tyers M, Sadowski I.
    Database (Oxford); 2010 Aug 27; 2010():bap026. PubMed ID: 20428315
    [Abstract] [Full Text] [Related]

  • 36. Study of Peroxisomal Protein Phosphorylation by Functional Proteomics.
    Schummer A, Fischer S, Oeljeklaus S, Warscheid B.
    Methods Mol Biol; 2017 Aug 27; 1595():267-289. PubMed ID: 28409471
    [Abstract] [Full Text] [Related]

  • 37. The fitness cost of spurious phosphorylation.
    Bradley D, Hogrebe A, Dandage R, Dubé AK, Leutert M, Dionne U, Chang A, Villén J, Landry CR.
    EMBO J; 2024 Oct 27; 43(20):4720-4751. PubMed ID: 39256561
    [Abstract] [Full Text] [Related]

  • 38. Multiplexed, Proteome-Wide Protein Expression Profiling: Yeast Deubiquitylating Enzyme Knockout Strains.
    Isasa M, Rose CM, Elsasser S, Navarrete-Perea J, Paulo JA, Finley DJ, Gygi SP.
    J Proteome Res; 2015 Dec 04; 14(12):5306-17. PubMed ID: 26503604
    [Abstract] [Full Text] [Related]

  • 39. Categorization of Phosphorylation Site Behavior during the Diauxic Shift in Saccharomyces cerevisiae.
    Gassaway BM, Paulo JA, Gygi SP.
    J Proteome Res; 2021 May 07; 20(5):2487-2496. PubMed ID: 33630598
    [Abstract] [Full Text] [Related]

  • 40. Phosphoproteomic Approaches for Identifying Phosphatase and Kinase Substrates.
    DeMarco AG, Hall MC.
    Molecules; 2023 Apr 24; 28(9):. PubMed ID: 37175085
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.