These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


203 related items for PubMed ID: 31724693

  • 1. Elucidating cyclic AMP signaling in subcellular domains with optogenetic tools and fluorescent biosensors.
    Klausen C, Kaiser F, Stüven B, Hansen JN, Wachten D.
    Biochem Soc Trans; 2019 Dec 20; 47(6):1733-1747. PubMed ID: 31724693
    [Abstract] [Full Text] [Related]

  • 2. Booster, a Red-Shifted Genetically Encoded Förster Resonance Energy Transfer (FRET) Biosensor Compatible with Cyan Fluorescent Protein/Yellow Fluorescent Protein-Based FRET Biosensors and Blue Light-Responsive Optogenetic Tools.
    Watabe T, Terai K, Sumiyama K, Matsuda M.
    ACS Sens; 2020 Mar 27; 5(3):719-730. PubMed ID: 32101394
    [Abstract] [Full Text] [Related]

  • 3. Modulation of cyclic nucleotide-mediated cellular signaling and gene expression using photoactivated adenylyl cyclase as an optogenetic tool.
    Tanwar M, Khera L, Haokip N, Kaul R, Naorem A, Kateriya S.
    Sci Rep; 2017 Sep 21; 7(1):12048. PubMed ID: 28935957
    [Abstract] [Full Text] [Related]

  • 4. FluoSTEPs: Fluorescent biosensors for monitoring compartmentalized signaling within endogenous microdomains.
    Tenner B, Zhang JZ, Kwon Y, Pessino V, Feng S, Huang B, Mehta S, Zhang J.
    Sci Adv; 2021 May 21; 7(21):. PubMed ID: 34020947
    [Abstract] [Full Text] [Related]

  • 5. Pharmacological modulation of the CO2/HCO3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase.
    Wiggins SV, Steegborn C, Levin LR, Buck J.
    Pharmacol Ther; 2018 Oct 21; 190():173-186. PubMed ID: 29807057
    [Abstract] [Full Text] [Related]

  • 6. Advances, Perspectives and Potential Engineering Strategies of Light-Gated Phosphodiesterases for Optogenetic Applications.
    Tian Y, Yang S, Gao S.
    Int J Mol Sci; 2020 Oct 13; 21(20):. PubMed ID: 33066112
    [Abstract] [Full Text] [Related]

  • 7. Cyclic Nucleotide-Specific Optogenetics Highlights Compartmentalization of the Sperm Flagellum into cAMP Microdomains.
    Raju DN, Hansen JN, Rassmann S, Stüven B, Jikeli JF, Strünker T, Körschen HG, Möglich A, Wachten D.
    Cells; 2019 Jun 27; 8(7):. PubMed ID: 31252584
    [Abstract] [Full Text] [Related]

  • 8. Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells.
    Blain-Hartung M, Rockwell NC, Moreno MV, Martin SS, Gan F, Bryant DA, Lagarias JC.
    J Biol Chem; 2018 Jun 01; 293(22):8473-8483. PubMed ID: 29632072
    [Abstract] [Full Text] [Related]

  • 9. Real-Time Measurements of Intracellular cAMP Gradients Using FRET-Based cAMP Nanorulers.
    Kayser C, Lohse MJ, Bock A.
    Methods Mol Biol; 2022 Jun 01; 2483():1-13. PubMed ID: 35286666
    [Abstract] [Full Text] [Related]

  • 10. Studies on cyclic adenosine 3' ,5'-monophosphate levels, Adenylate cyclase and phosphodiesterase activities in the dimorphic fungus Mucor rouxii.
    Paveto C, Epstein A, Passeron S.
    Arch Biochem Biophys; 1975 Aug 01; 169(2):449-57. PubMed ID: 170864
    [No Abstract] [Full Text] [Related]

  • 11. Cyclic AMP control measured in two compartments in HEK293 cells: phosphodiesterase K(M) is more important than phosphodiesterase localization.
    Matthiesen K, Nielsen J.
    PLoS One; 2011 Aug 01; 6(9):e24392. PubMed ID: 21931705
    [Abstract] [Full Text] [Related]

  • 12. Study of cyclic adenosine monophosphate microdomains in cells.
    Mongillo M, Terrin A, Evellin S, Lissandron V, Zaccolo M.
    Methods Mol Biol; 2005 Aug 01; 307():1-13. PubMed ID: 15988051
    [Abstract] [Full Text] [Related]

  • 13. cAMP signaling in Dictyostelium. Complexity of cAMP synthesis, degradation and detection.
    Saran S, Meima ME, Alvarez-Curto E, Weening KE, Rozen DE, Schaap P.
    J Muscle Res Cell Motil; 2002 Aug 01; 23(7-8):793-802. PubMed ID: 12952077
    [Abstract] [Full Text] [Related]

  • 14. Characterization and engineering of photoactivated adenylyl cyclases.
    Stüven B, Stabel R, Ohlendorf R, Beck J, Schubert R, Möglich A.
    Biol Chem; 2019 Feb 25; 400(3):429-441. PubMed ID: 30763033
    [Abstract] [Full Text] [Related]

  • 15. cAMP/PKA signaling compartmentalization in cardiomyocytes: Lessons from FRET-based biosensors.
    Ghigo A, Mika D.
    J Mol Cell Cardiol; 2019 Jun 25; 131():112-121. PubMed ID: 31028775
    [Abstract] [Full Text] [Related]

  • 16. Imaging the cAMP Signaling Microdomain of the Primary Cilium Using Targeted FRET-Based Biosensors.
    Arena DT, Hofer AM.
    Methods Mol Biol; 2022 Jun 25; 2483():77-92. PubMed ID: 35286670
    [Abstract] [Full Text] [Related]

  • 17. Optical Mapping of cAMP Signaling at the Nanometer Scale.
    Bock A, Annibale P, Konrad C, Hannawacker A, Anton SE, Maiellaro I, Zabel U, Sivaramakrishnan S, Falcke M, Lohse MJ.
    Cell; 2020 Sep 17; 182(6):1519-1530.e17. PubMed ID: 32846156
    [Abstract] [Full Text] [Related]

  • 18. Compartmentalized cAMP Generation by Engineered Photoactivated Adenylyl Cyclases.
    O'Banion CP, Vickerman BM, Haar L, Lawrence DS.
    Cell Chem Biol; 2019 Oct 17; 26(10):1393-1406.e7. PubMed ID: 31353320
    [Abstract] [Full Text] [Related]

  • 19. In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors.
    Rich TC, Tse TE, Rohan JG, Schaack J, Karpen JW.
    J Gen Physiol; 2001 Jul 17; 118(1):63-78. PubMed ID: 11429444
    [Abstract] [Full Text] [Related]

  • 20. Decoding spatial and temporal features of neuronal cAMP/PKA signaling with FRET biosensors.
    Castro LR, Guiot E, Polito M, Paupardin-Tritsch D, Vincent P.
    Biotechnol J; 2014 Feb 17; 9(2):192-202. PubMed ID: 24478276
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.