These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


386 related items for PubMed ID: 31727678

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. A differentially regulated AP2/ERF transcription factor gene cluster acts downstream of a MAP kinase cascade to modulate terpenoid indole alkaloid biosynthesis in Catharanthus roseus.
    Paul P, Singh SK, Patra B, Sui X, Pattanaik S, Yuan L.
    New Phytol; 2017 Feb; 213(3):1107-1123. PubMed ID: 27801944
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus.
    Zhang H, Hedhili S, Montiel G, Zhang Y, Chatel G, Pré M, Gantet P, Memelink J.
    Plant J; 2011 Jul; 67(1):61-71. PubMed ID: 21401746
    [Abstract] [Full Text] [Related]

  • 7. Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes.
    Shoji T, Hashimoto T.
    Plant Cell Physiol; 2011 Jun; 52(6):1117-30. PubMed ID: 21576194
    [Abstract] [Full Text] [Related]

  • 8. Clustered transcription factor genes regulate nicotine biosynthesis in tobacco.
    Shoji T, Kajikawa M, Hashimoto T.
    Plant Cell; 2010 Oct; 22(10):3390-409. PubMed ID: 20959558
    [Abstract] [Full Text] [Related]

  • 9. Jasmonate-Responsive ERF Transcription Factors Regulate Steroidal Glycoalkaloid Biosynthesis in Tomato.
    Thagun C, Imanishi S, Kudo T, Nakabayashi R, Ohyama K, Mori T, Kawamoto K, Nakamura Y, Katayama M, Nonaka S, Matsukura C, Yano K, Ezura H, Saito K, Hashimoto T, Shoji T.
    Plant Cell Physiol; 2016 May; 57(5):961-75. PubMed ID: 27084593
    [Abstract] [Full Text] [Related]

  • 10. Transcriptomics comparison reveals the diversity of ethylene and methyl-jasmonate in roles of TIA metabolism in Catharanthus roseus.
    Pan YJ, Lin YC, Yu BF, Zu YG, Yu F, Tang ZH.
    BMC Genomics; 2018 Jul 02; 19(1):508. PubMed ID: 29966514
    [Abstract] [Full Text] [Related]

  • 11. NtERF32: a non-NIC2 locus AP2/ERF transcription factor required in jasmonate-inducible nicotine biosynthesis in tobacco.
    Sears MT, Zhang H, Rushton PJ, Wu M, Han S, Spano AJ, Timko MP.
    Plant Mol Biol; 2014 Jan 02; 84(1-2):49-66. PubMed ID: 23934400
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Engineering overexpression of ORCA3 and strictosidine glucosidase in Catharanthus roseus hairy roots increases alkaloid production.
    Sun J, Peebles CA.
    Protoplasma; 2016 Sep 02; 253(5):1255-64. PubMed ID: 26351111
    [Abstract] [Full Text] [Related]

  • 14. Promoter analysis reveals cis-regulatory motifs associated with the expression of the WRKY transcription factor CrWRKY1 in Catharanthus roseus.
    Yang Z, Patra B, Li R, Pattanaik S, Yuan L.
    Planta; 2013 Dec 02; 238(6):1039-49. PubMed ID: 23979312
    [Abstract] [Full Text] [Related]

  • 15. Increased Leaf Nicotine Content by Targeting Transcription Factor Gene Expression in Commercial Flue-Cured Tobacco (Nicotiana tabacum L.).
    Liu H, Kotova TI, Timko MP.
    Genes (Basel); 2019 Nov 14; 10(11):. PubMed ID: 31739571
    [Abstract] [Full Text] [Related]

  • 16. Proteins prenylated by type I protein geranylgeranyltransferase act positively on the jasmonate signalling pathway triggering the biosynthesis of monoterpene indole alkaloids in Catharanthus roseus.
    Courdavault V, Burlat V, St-Pierre B, Giglioli-Guivarc'h N.
    Plant Cell Rep; 2009 Jan 14; 28(1):83-93. PubMed ID: 18813931
    [Abstract] [Full Text] [Related]

  • 17. The jasmonate-responsive element from the ORCA3 promoter from Catharanthus roseus is active in Arabidopsis and is controlled by the transcription factor AtMYC2.
    Montiel G, Zarei A, Körbes AP, Memelink J.
    Plant Cell Physiol; 2011 Mar 14; 52(3):578-87. PubMed ID: 21306988
    [Abstract] [Full Text] [Related]

  • 18. Molecular cloning and functional characterization of Catharanthus roseus hydroxymethylbutenyl 4-diphosphate synthase gene promoter from the methyl erythritol phosphate pathway.
    Ginis O, Courdavault V, Melin C, Lanoue A, Giglioli-Guivarc'h N, St-Pierre B, Courtois M, Oudin A.
    Mol Biol Rep; 2012 May 14; 39(5):5433-47. PubMed ID: 22160472
    [Abstract] [Full Text] [Related]

  • 19. Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time.
    Peebles CA, Hughes EH, Shanks JV, San KY.
    Metab Eng; 2009 Mar 14; 11(2):76-86. PubMed ID: 18955153
    [Abstract] [Full Text] [Related]

  • 20. Clade IVa Basic Helix-Loop-Helix Transcription Factors Form Part of a Conserved Jasmonate Signaling Circuit for the Regulation of Bioactive Plant Terpenoid Biosynthesis.
    Mertens J, Van Moerkercke A, Vanden Bossche R, Pollier J, Goossens A.
    Plant Cell Physiol; 2016 Dec 14; 57(12):2564-2575. PubMed ID: 27694525
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.