These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1215 related items for PubMed ID: 31728587

  • 1. Value of pre-therapy 18F-FDG PET/CT radiomics in predicting EGFR mutation status in patients with non-small cell lung cancer.
    Zhang J, Zhao X, Zhao Y, Zhang J, Zhang Z, Wang J, Wang Y, Dai M, Han J.
    Eur J Nucl Med Mol Imaging; 2020 May; 47(5):1137-1146. PubMed ID: 31728587
    [Abstract] [Full Text] [Related]

  • 2. A Novel Approach Using FDG-PET/CT-Based Radiomics to Assess Tumor Immune Phenotypes in Patients With Non-Small Cell Lung Cancer.
    Zhou J, Zou S, Kuang D, Yan J, Zhao J, Zhu X.
    Front Oncol; 2021 May; 11():769272. PubMed ID: 34868999
    [Abstract] [Full Text] [Related]

  • 3. Efficient 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based machine learning model for predicting epidermal growth factor receptor mutations in non-small cell lung cancer.
    Ruan D, Fang J, Teng X.
    Q J Nucl Med Mol Imaging; 2024 Mar; 68(1):70-83. PubMed ID: 35420272
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Value of multi-center 18F-FDG PET/CT radiomics in predicting EGFR mutation status in lung adenocarcinoma.
    Zuo Y, Liu L, Chang C, Yan H, Wang L, Sun D, Ruan M, Lei B, Xia X, Xie W, Song S, Huang G.
    Med Phys; 2024 Jul; 51(7):4872-4887. PubMed ID: 38285641
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Machine learning based on clinico-biological features integrated 18F-FDG PET/CT radiomics for distinguishing squamous cell carcinoma from adenocarcinoma of lung.
    Ren C, Zhang J, Qi M, Zhang J, Zhang Y, Song S, Sun Y, Cheng J.
    Eur J Nucl Med Mol Imaging; 2021 May; 48(5):1538-1549. PubMed ID: 33057772
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. 2-[18F]FDG PET-based quantification of lymph node metabolic heterogeneity for predicting lymph node metastasis in patients with colorectal cancer.
    Xu L, Huang G, Wang Y, Huang G, Liu J, Chen R.
    Eur J Nucl Med Mol Imaging; 2024 May; 51(6):1729-1740. PubMed ID: 38150017
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts Tumor Immune Profiles in Non-Small Cell Lung Cancer: A Retrospective Multicohort Study.
    Tong H, Sun J, Fang J, Zhang M, Liu H, Xia R, Zhou W, Liu K, Chen X.
    Front Immunol; 2022 May; 13():859323. PubMed ID: 35572597
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Molecular subtype classification of breast cancer using established radiomic signature models based on 18F-FDG PET/CT images.
    Liu J, Bian H, Zhang Y, Gao Y, Yin G, Wang Z, Li X, Ma W, Xu W.
    Front Biosci (Landmark Ed); 2021 Aug 30; 26(9):475-484. PubMed ID: 34590460
    [Abstract] [Full Text] [Related]

  • 20. A novel radiomic nomogram for predicting epidermal growth factor receptor mutation in peripheral lung adenocarcinoma.
    Lu X, Li M, Zhang H, Hua S, Meng F, Yang H, Li X, Cao D.
    Phys Med Biol; 2020 Mar 06; 65(5):055012. PubMed ID: 31978901
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 61.