These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
764 related items for PubMed ID: 31733331
1. Hydrophobic scaffolds of pH-sensitive cationic lipids contribute to miscibility with phospholipids and improve the efficiency of delivering short interfering RNA by small-sized lipid nanoparticles. Sato Y, Okabe N, Note Y, Hashiba K, Maeki M, Tokeshi M, Harashima H. Acta Biomater; 2020 Jan 15; 102():341-350. PubMed ID: 31733331 [Abstract] [Full Text] [Related]
2. Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo. Sato Y, Hashiba K, Sasaki K, Maeki M, Tokeshi M, Harashima H. J Control Release; 2019 Feb 10; 295():140-152. PubMed ID: 30610950 [Abstract] [Full Text] [Related]
5. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Cheng X, Lee RJ. Adv Drug Deliv Rev; 2016 Apr 01; 99(Pt A):129-137. PubMed ID: 26900977 [Abstract] [Full Text] [Related]
8. Quantitation of physiological and biochemical barriers to siRNA liver delivery via lipid nanoparticle platform. Xu Y, Ou M, Keough E, Roberts J, Koeplinger K, Lyman M, Fauty S, Carlini E, Stern M, Zhang R, Yeh S, Mahan E, Wang Y, Slaughter D, Gindy M, Raab C, Thompson C, Hochman J. Mol Pharm; 2014 May 05; 11(5):1424-34. PubMed ID: 24588618 [Abstract] [Full Text] [Related]
9. Delivery of small interfering ribonucleic acid using lipid nanoparticles prepared with pH-responsive dipeptide-conjugated lipids. Matayoshi K, Song F, Koide H, Yonezawa S, Nitta C, Okada M, Ozaki N, Kurata M, Asai T. Biochem Biophys Res Commun; 2024 Oct 15; 729():150372. PubMed ID: 38981400 [Abstract] [Full Text] [Related]
11. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery. Kimura N, Maeki M, Sato Y, Ishida A, Tani H, Harashima H, Tokeshi M. ACS Appl Mater Interfaces; 2020 Jul 29; 12(30):34011-34020. PubMed ID: 32667806 [Abstract] [Full Text] [Related]
13. Enhanced Delivery of siRNA to Retinal Ganglion Cells by Intravitreal Lipid Nanoparticles of Positive Charge. Huang X, Chau Y. Mol Pharm; 2021 Jan 04; 18(1):377-385. PubMed ID: 33295773 [Abstract] [Full Text] [Related]
14. The development of an in vitro assay to screen lipid based nanoparticles for siRNA delivery. Zhang Y, Arrington L, Boardman D, Davis J, Xu Y, DiFelice K, Stirdivant S, Wang W, Budzik B, Bawiec J, Deng J, Beutner G, Seifried D, Stanton M, Gindy M, Leone A. J Control Release; 2014 Jan 28; 174():7-14. PubMed ID: 24240015 [Abstract] [Full Text] [Related]
15. A Multifunctional Envelope-Type Nano Device Containing a pH-Sensitive Cationic Lipid for Efficient Delivery of Short Interfering RNA to Hepatocytes In Vivo. Sato Y, Harashima H, Kohara M. Methods Mol Biol; 2016 Jan 28; 1364():71-8. PubMed ID: 26472443 [Abstract] [Full Text] [Related]
18. Design and evaluation of new pH-sensitive amphiphilic cationic lipids for siRNA delivery. Malamas AS, Gujrati M, Kummitha CM, Xu R, Lu ZR. J Control Release; 2013 Nov 10; 171(3):296-307. PubMed ID: 23796431 [Abstract] [Full Text] [Related]
19. Structure, activity and uptake mechanism of siRNA-lipid nanoparticles with an asymmetric ionizable lipid. Suzuki Y, Ishihara H. Int J Pharm; 2016 Aug 20; 510(1):350-8. PubMed ID: 27374199 [Abstract] [Full Text] [Related]
20. Nanometer-scale siRNA carriers incorporating peptidomimetic oligomers: physical characterization and biological activity. Konca YU, Kirshenbaum K, Zuckermann RN. Int J Nanomedicine; 2014 Aug 20; 9():2271-85. PubMed ID: 24872690 [Abstract] [Full Text] [Related] Page: [Next] [New Search]