These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


169 related items for PubMed ID: 31736009

  • 1. Prediction of essential genes in prokaryote based on artificial neural network.
    Xu L, Guo Z, Liu X.
    Genes Genomics; 2020 Jan; 42(1):97-106. PubMed ID: 31736009
    [Abstract] [Full Text] [Related]

  • 2. Machine learning approach to gene essentiality prediction: a review.
    Aromolaran O, Aromolaran D, Isewon I, Oyelade J.
    Brief Bioinform; 2021 Sep 02; 22(5):. PubMed ID: 33842944
    [Abstract] [Full Text] [Related]

  • 3. Predicting essential genes of 37 prokaryotes by combining information-theoretic features.
    Liu X, Luo Y, He T, Ren M, Xu Y.
    J Microbiol Methods; 2021 Sep 02; 188():106297. PubMed ID: 34343487
    [Abstract] [Full Text] [Related]

  • 4. Selection of key sequence-based features for prediction of essential genes in 31 diverse bacterial species.
    Liu X, Wang BJ, Xu L, Tang HL, Xu GQ.
    PLoS One; 2017 Sep 02; 12(3):e0174638. PubMed ID: 28358836
    [Abstract] [Full Text] [Related]

  • 5. Network-based features enable prediction of essential genes across diverse organisms.
    Azhagesan K, Ravindran B, Raman K.
    PLoS One; 2018 Sep 02; 13(12):e0208722. PubMed ID: 30543651
    [Abstract] [Full Text] [Related]

  • 6. DeepHE: Accurately predicting human essential genes based on deep learning.
    Zhang X, Xiao W, Xiao W.
    PLoS Comput Biol; 2020 Sep 02; 16(9):e1008229. PubMed ID: 32936825
    [Abstract] [Full Text] [Related]

  • 7. Training set selection for the prediction of essential genes.
    Cheng J, Xu Z, Wu W, Zhao L, Li X, Liu Y, Tao S.
    PLoS One; 2014 Sep 02; 9(1):e86805. PubMed ID: 24466248
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. EPGAT: Gene Essentiality Prediction With Graph Attention Networks.
    Schapke J, Tavares A, Recamonde-Mendoza M.
    IEEE/ACM Trans Comput Biol Bioinform; 2022 Sep 02; 19(3):1615-1626. PubMed ID: 33497339
    [Abstract] [Full Text] [Related]

  • 10. Network Embedding the Protein-Protein Interaction Network for Human Essential Genes Identification.
    Dai W, Chang Q, Peng W, Zhong J, Li Y.
    Genes (Basel); 2020 Jan 31; 11(2):. PubMed ID: 32023848
    [Abstract] [Full Text] [Related]

  • 11. Predicting essential genes in prokaryotic genomes using a linear method: ZUPLS.
    Song K, Tong T, Wu F.
    Integr Biol (Camb); 2014 Apr 31; 6(4):460-9. PubMed ID: 24603751
    [Abstract] [Full Text] [Related]

  • 12. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information.
    Acencio ML, Lemke N.
    BMC Bioinformatics; 2009 Sep 16; 10():290. PubMed ID: 19758426
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. An integrated machine-learning model to predict prokaryotic essential genes.
    Deng J.
    Methods Mol Biol; 2015 Sep 16; 1279():137-51. PubMed ID: 25636617
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Sequence-based information-theoretic features for gene essentiality prediction.
    Nigatu D, Sobetzko P, Yousef M, Henkel W.
    BMC Bioinformatics; 2017 Nov 09; 18(1):473. PubMed ID: 29121868
    [Abstract] [Full Text] [Related]

  • 20. Analysis and identification of essential genes in humans using topological properties and biological information.
    Yang L, Wang J, Wang H, Lv Y, Zuo Y, Li X, Jiang W.
    Gene; 2014 Nov 10; 551(2):138-51. PubMed ID: 25168893
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.