These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
257 related items for PubMed ID: 31746588
21. Phonon transport in graphene based materials. Liu C, Lu P, Chen W, Zhao Y, Chen Y. Phys Chem Chem Phys; 2021 Dec 01; 23(46):26030-26060. PubMed ID: 34515261 [Abstract] [Full Text] [Related]
22. Thermal AND Gate Using a Monolayer Graphene Nanoribbon. Pal S, Puri IK. Small; 2015 Jun 24; 11(24):2910-7. PubMed ID: 25689108 [Abstract] [Full Text] [Related]
23. Functionalization mediates heat transport in graphene nanoflakes. Han H, Zhang Y, Wang N, Samani MK, Ni Y, Mijbil ZY, Edwards M, Xiong S, Sääskilahti K, Murugesan M, Fu Y, Ye L, Sadeghi H, Bailey S, Kosevich YA, Lambert CJ, Liu J, Volz S. Nat Commun; 2016 Apr 29; 7():11281. PubMed ID: 27125636 [Abstract] [Full Text] [Related]
25. Molecular dynamics simulations of the thermal conductivity of graphene for application in wearable devices. Zhan N, Chen B, Li C, Shen PK. Nanotechnology; 2019 Jan 11; 30(2):025705. PubMed ID: 30387446 [Abstract] [Full Text] [Related]
26. The effect of non-covalent functionalization on the thermal conductance of graphene/organic interfaces. Lin S, Buehler MJ. Nanotechnology; 2013 Apr 26; 24(16):165702. PubMed ID: 23535514 [Abstract] [Full Text] [Related]
27. Unusual Enhancement in Intrinsic Thermal Conductivity of Multilayer Graphene by Tensile Strains. Kuang Y, Lindsay L, Huang B. Nano Lett; 2015 Sep 09; 15(9):6121-7. PubMed ID: 26241731 [Abstract] [Full Text] [Related]
28. Small-Nanostructure-Size-Limited Phonon Transport within Composite Films Made of Single-Wall Carbon Nanotubes and Reduced Graphene Oxides. Chen Q, Yan X, Wu L, Xiao Y, Wang S, Cheng G, Zheng R, Hao Q. ACS Appl Mater Interfaces; 2021 Feb 03; 13(4):5435-5444. PubMed ID: 33492119 [Abstract] [Full Text] [Related]
29. Thermal conductance bottleneck of a three dimensional graphene-CNT hybrid structure: a molecular dynamics simulation. Yu Z, Feng Y, Feng D, Zhang X. Phys Chem Chem Phys; 2019 Dec 18; 22(1):337-343. PubMed ID: 31815266 [Abstract] [Full Text] [Related]
30. Thermal conductivity of graphene under biaxial strain: an analysis of spectral phonon properties. K V S D, Kannam SK, Sathian SP. Nanotechnology; 2020 Aug 21; 31(34):345703. PubMed ID: 32369790 [Abstract] [Full Text] [Related]
31. Reduced Thermal Transport in the Graphene/MoS2/Graphene Heterostructure: A Comparison with Freestanding Monolayers. Srinivasan S, Balasubramanian G. Langmuir; 2018 Mar 13; 34(10):3326-3335. PubMed ID: 29429341 [Abstract] [Full Text] [Related]
32. Hydrogenation of Penta-Graphene Leads to Unexpected Large Improvement in Thermal Conductivity. Wu X, Varshney V, Lee J, Zhang T, Wohlwend JL, Roy AK, Luo T. Nano Lett; 2016 Jun 08; 16(6):3925-35. PubMed ID: 27152879 [Abstract] [Full Text] [Related]
33. Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. Wang Y, Vallabhaneni A, Hu J, Qiu B, Chen YP, Ruan X. Nano Lett; 2014 Feb 12; 14(2):592-6. PubMed ID: 24393070 [Abstract] [Full Text] [Related]
34. Controllable Synthesis and Growth Mechanism of Interlayer-Coupled Multilayer Graphene. Xue X, Liu M, Zhou X, Liu S, Wang L, Yu G. Nanomaterials (Basel); 2023 Sep 25; 13(19):. PubMed ID: 37836275 [Abstract] [Full Text] [Related]
35. Modulation of the thermal conductivity, interlayer thermal resistance, and interfacial thermal conductance of C2N. Song J, Xu Z, He X, Liang X. Phys Chem Chem Phys; 2022 Apr 20; 24(16):9648-9658. PubMed ID: 35411355 [Abstract] [Full Text] [Related]
36. Fluffy and Ordered Graphene Multilayer Films with Improved Electromagnetic Interference Shielding over X-Band. Wang Z, Wei R, Liu X. ACS Appl Mater Interfaces; 2017 Jul 12; 9(27):22408-22419. PubMed ID: 28640583 [Abstract] [Full Text] [Related]
37. Shear deformation-induced anisotropic thermal conductivity of graphene. Cui L, Shi S, Wei G, Du X. Phys Chem Chem Phys; 2018 Jan 03; 20(2):951-957. PubMed ID: 29231938 [Abstract] [Full Text] [Related]
38. A novel solid-state thermal rectifier based on reduced graphene oxide. Tian H, Xie D, Yang Y, Ren TL, Zhang G, Wang YF, Zhou CJ, Peng PG, Wang LG, Liu LT. Sci Rep; 2012 Jan 03; 2():523. PubMed ID: 22826801 [Abstract] [Full Text] [Related]
39. Interfacial thermal transport between graphene and diamane. Hong Y, Kretchmer JS. J Chem Phys; 2022 Apr 28; 156(16):164703. PubMed ID: 35489998 [Abstract] [Full Text] [Related]
40. Thermal Rectification in Graphene-Boron Nitride Nanotube Hybrid Structures: An Independent Control Mechanism for Forward and Backward Heat Flux. Wu N, Liu Y, Wang S, Xing Z, Tang G. ACS Appl Mater Interfaces; 2024 Aug 14; 16(32):42660-42673. PubMed ID: 39078264 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]