These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


178 related items for PubMed ID: 31747551

  • 1. The bimodal gas exchange strategies of dragonfly nymphs across development.
    de Pennart A, Matthews PGD.
    J Insect Physiol; 2020 Jan; 120():103982. PubMed ID: 31747551
    [Abstract] [Full Text] [Related]

  • 2. Changes in hemolymph total CO2 content during the water-to-air respiratory transition of amphibiotic dragonflies.
    Lee DJ, Gutbrod M, Ferreras FM, Matthews PGD.
    J Exp Biol; 2018 Aug 03; 221(Pt 15):. PubMed ID: 29950450
    [Abstract] [Full Text] [Related]

  • 3. Quantifying the acid-base status of dragonflies across their transition from breathing water to breathing air.
    Lee DJ, Matthews PGD.
    J Exp Biol; 2019 Nov 21; 222(Pt 22):. PubMed ID: 31672724
    [Abstract] [Full Text] [Related]

  • 4. The transition from water to air in aeshnid dragonflies is associated with a change in ventilatory responses to hypoxia and hypercapnia.
    Ubhi R, Matthews PGD.
    J Insect Physiol; 2018 Apr 21; 106(Pt 3):172-178. PubMed ID: 28965969
    [Abstract] [Full Text] [Related]

  • 5. Oxygen extraction efficiency of the tidally-ventilated rectal gills of dragonfly nymphs.
    Lee DJ, Matthews PGD.
    Proc Biol Sci; 2024 Jan 31; 291(2015):20231699. PubMed ID: 38264780
    [Abstract] [Full Text] [Related]

  • 6. A novel technique for the precise measurement of CO2 production rate in small aquatic organisms as validated on aeshnid dragonfly nymphs.
    Harter TS, Brauner CJ, Matthews PG.
    J Exp Biol; 2017 Mar 15; 220(Pt 6):964-968. PubMed ID: 28082613
    [Abstract] [Full Text] [Related]

  • 7. Air breathing and aquatic gas exchange during hypoxia in armoured catfish.
    Scott GR, Matey V, Mendoza JA, Gilmour KM, Perry SF, Almeida-Val VM, Val AL.
    J Comp Physiol B; 2017 Jan 15; 187(1):117-133. PubMed ID: 27461227
    [Abstract] [Full Text] [Related]

  • 8. How insects transition from water to air: Respiratory insights from dragonflies.
    Lee DJ, Matthews PGD.
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Mar 15; 253():110859. PubMed ID: 33276132
    [Abstract] [Full Text] [Related]

  • 9. Gills and air-breathing organ in O2 uptake, CO2 excretion, N-waste excretion, and ionoregulation in small and large pirarucu (Arapaima gigas).
    Pelster B, Wood CM, Braz-Mota S, Val AL.
    J Comp Physiol B; 2020 Sep 15; 190(5):569-583. PubMed ID: 32529591
    [Abstract] [Full Text] [Related]

  • 10. Hypoxia tolerance and partitioning of bimodal respiration in the striped catfish (Pangasianodon hypophthalmus).
    Lefevre S, Huong do TT, Wang T, Phuong NT, Bayley M.
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Feb 15; 158(2):207-14. PubMed ID: 21056112
    [Abstract] [Full Text] [Related]

  • 11. Do air-breathing fish suffer branchial oxygen loss in hypoxic water?
    Aaskov ML, Nelson D, Lauridsen H, Huong DTT, Ishimatsu A, Crossley DA, Malte H, Bayley M.
    Proc Biol Sci; 2023 Sep 13; 290(2006):20231353. PubMed ID: 37700647
    [Abstract] [Full Text] [Related]

  • 12. Control of gill ventilation and air-breathing in the bowfin amia calva.
    Hedrick MS, Jones DR.
    J Exp Biol; 1999 Jan 13; 202(1):87-94. PubMed ID: 9841898
    [Abstract] [Full Text] [Related]

  • 13. Effect of aerial O2 partial pressure on bimodal gas exchange and air-breathing behaviour in Trichogaster leeri.
    Alton LA, White CR, Seymour RS.
    J Exp Biol; 2007 Jul 13; 210(Pt 13):2311-9. PubMed ID: 17575036
    [Abstract] [Full Text] [Related]

  • 14. Changing respiratory importance of gills, lungs and skin during metamorphosis in the bullfrog Rana catesbeiana.
    Burggren WW, West NH.
    Respir Physiol; 1982 Feb 13; 47(2):151-64. PubMed ID: 6803316
    [Abstract] [Full Text] [Related]

  • 15. Oxygen uptake in bullfrog tadpoles (Rana catesbeiana).
    Crowder WC, Nie M, Ultsch GR.
    J Exp Zool; 1998 Feb 01; 280(2):121-34. PubMed ID: 9433799
    [Abstract] [Full Text] [Related]

  • 16. Acute effects of temperature and hypercarbia on cutaneous and branchial gas exchange in the South American lungfish, Lepidosiren paradoxa.
    Zena LA, Bícego KC, da Silva GS, Giusti H, Glass ML, Sanchez AP.
    J Therm Biol; 2017 Jan 01; 63():112-118. PubMed ID: 28010808
    [Abstract] [Full Text] [Related]

  • 17. Circulating catecholamines and cardiorespiratory responses in hypoxic lungfish (Protopterus dolloi): a comparison of aquatic and aerial hypoxia.
    Perry SF, Gilmour KM, Vulesevic B, McNeill B, Chew SF, Ip YK.
    Physiol Biochem Zool; 2005 Jan 01; 78(3):325-34. PubMed ID: 15887079
    [Abstract] [Full Text] [Related]

  • 18. Partitioning of respiration between the gills and air-breathing organ in response to aquatic hypoxia and exercise in the pacific tarpon, Megalops cyprinoides.
    Seymour RS, Christian K, Bennett MB, Baldwin J, Wells RM, Baudinette RV.
    Physiol Biochem Zool; 2004 Jan 01; 77(5):760-7. PubMed ID: 15547794
    [Abstract] [Full Text] [Related]

  • 19. Morphological and biochemical variations in the gills of 12 aquatic air-breathing anabantoid fish.
    Huang CY, Lin CP, Lin HC.
    Physiol Biochem Zool; 2011 Jan 01; 84(2):125-34. PubMed ID: 21460523
    [Abstract] [Full Text] [Related]

  • 20. Hypoxia-induced developmental plasticity of the gills and air-breathing organ of Trichopodus trichopterus.
    Blank T, Burggren W.
    J Fish Biol; 2014 Mar 01; 84(3):808-26. PubMed ID: 24502819
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.