These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
324 related items for PubMed ID: 31750523
1. A single ChIP-seq dataset is sufficient for comprehensive analysis of motifs co-occurrence with MCOT package. Levitsky V, Zemlyanskaya E, Oshchepkov D, Podkolodnaya O, Ignatieva E, Grosse I, Mironova V, Merkulova T. Nucleic Acids Res; 2019 Dec 02; 47(21):e139. PubMed ID: 31750523 [Abstract] [Full Text] [Related]
2. Web-MCOT Server for Motif Co-Occurrence Search in ChIP-Seq Data. Levitsky VG, Mukhin AM, Oshchepkov DY, Zemlyanskaya EV, Lashin SA. Int J Mol Sci; 2022 Aug 11; 23(16):. PubMed ID: 36012247 [Abstract] [Full Text] [Related]
3. Asymmetric Conservation within Pairs of Co-Occurred Motifs Mediates Weak Direct Binding of Transcription Factors in ChIP-Seq Data. Levitsky V, Oshchepkov D, Zemlyanskaya E, Merkulova T. Int J Mol Sci; 2020 Aug 21; 21(17):. PubMed ID: 32825662 [Abstract] [Full Text] [Related]
4. FisherMP: fully parallel algorithm for detecting combinatorial motifs from large ChIP-seq datasets. Zhang S, Liang Y, Wang X, Su Z, Chen Y. DNA Res; 2019 Jun 01; 26(3):231-242. PubMed ID: 30957858 [Abstract] [Full Text] [Related]
5. Crunch: integrated processing and modeling of ChIP-seq data in terms of regulatory motifs. Berger S, Pachkov M, Arnold P, Omidi S, Kelley N, Salatino S, van Nimwegen E. Genome Res; 2019 Jul 01; 29(7):1164-1177. PubMed ID: 31138617 [Abstract] [Full Text] [Related]
6. Identification of Predictive Cis-Regulatory Elements Using a Discriminative Objective Function and a Dynamic Search Space. Karnik R, Beer MA. PLoS One; 2015 Jul 01; 10(10):e0140557. PubMed ID: 26465884 [Abstract] [Full Text] [Related]
7. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets. Niu M, Tabari ES, Su Z. BMC Genomics; 2014 Dec 02; 15():1047. PubMed ID: 25442502 [Abstract] [Full Text] [Related]
8. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets. Ha N, Polychronidou M, Lohmann I. PLoS One; 2012 Dec 02; 7(12):e52055. PubMed ID: 23272209 [Abstract] [Full Text] [Related]
9. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Chow CN, Lee TY, Hung YC, Li GZ, Tseng KC, Liu YH, Kuo PL, Zheng HQ, Chang WC. Nucleic Acids Res; 2019 Jan 08; 47(D1):D1155-D1163. PubMed ID: 30395277 [Abstract] [Full Text] [Related]
10. RSAT::Plants: Motif Discovery in ChIP-Seq Peaks of Plant Genomes. Castro-Mondragon JA, Rioualen C, Contreras-Moreira B, van Helden J. Methods Mol Biol; 2016 Jan 08; 1482():297-322. PubMed ID: 27557775 [Abstract] [Full Text] [Related]
11. Analysis of Co-Associated Transcription Factors via Ordered Adjacency Differences on Motif Distribution. Pan G, Tang J, Guo F. Sci Rep; 2017 Feb 27; 7():43597. PubMed ID: 28240320 [Abstract] [Full Text] [Related]
12. SIOMICS: a novel approach for systematic identification of motifs in ChIP-seq data. Ding J, Hu H, Li X. Nucleic Acids Res; 2014 Mar 27; 42(5):e35. PubMed ID: 24322294 [Abstract] [Full Text] [Related]
13. Systematic discovery of cofactor motifs from ChIP-seq data by SIOMICS. Ding J, Dhillon V, Li X, Hu H. Methods; 2015 Jun 27; 79-80():47-51. PubMed ID: 25171961 [Abstract] [Full Text] [Related]
14. Heterodimeric DNA motif synthesis and validations. Wong KC, Lin J, Li X, Lin Q, Liang C, Song YQ. Nucleic Acids Res; 2019 Feb 28; 47(4):1628-1636. PubMed ID: 30590725 [Abstract] [Full Text] [Related]