These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
112 related items for PubMed ID: 31751684
1. Allosteric inhibition and kinetic characterization of Klebsiella pneumoniae CysE: An emerging drug target. Verma D, Gupta S, Saxena R, Kaur P, R R, Srivastava S, Gupta V. Int J Biol Macromol; 2020 May 15; 151():1240-1249. PubMed ID: 31751684 [Abstract] [Full Text] [Related]
2. Recombinant production of active Streptococcus pneumoniae CysE in E. coli facilitated by codon optimized BL21(DE3)-RIL and detergent. Verma D, Antil M, Gupta V. Prep Biochem Biotechnol; 2019 May 15; 49(4):368-374. PubMed ID: 30734630 [Abstract] [Full Text] [Related]
3. Is perturbation in the quaternary structure of bacterial CysE, another regulatory mechanism for cysteine synthesis? Verma D, Gupta S, Kaur KJ, Gupta V. Int J Biol Macromol; 2018 May 15; 111():1010-1018. PubMed ID: 29366889 [Abstract] [Full Text] [Related]
4. Characterization of serine acetyltransferase (CysE) from methicillin-resistant Staphylococcus aureus and inhibitory effect of two natural products on CysE. Chen C, Yan Q, Tao M, Shi H, Han X, Jia L, Huang Y, Zhao L, Wang C, Ma X, Ma Y. Microb Pathog; 2019 Jun 15; 131():218-226. PubMed ID: 30974158 [Abstract] [Full Text] [Related]
5. Identification and characterization of serine acetyltransferase encoded by the Mycobacterium tuberculosis Rv2335 gene. Qiu J, Wang D, Ma Y, Jiang T, Xin Y. Int J Mol Med; 2013 May 15; 31(5):1229-33. PubMed ID: 23483228 [Abstract] [Full Text] [Related]
6. Homology modeling and identification of amino acids involved in the catalytic process of Mycobacterium tuberculosis serine acetyltransferase. Qiu J, Zang S, Ma Y, Owusu L, Zhou L, Jiang T, Xin Y. Mol Med Rep; 2017 Mar 15; 15(3):1343-1347. PubMed ID: 28138713 [Abstract] [Full Text] [Related]
7. Substrate-Induced Facilitated Dissociation of the Competitive Inhibitor from the Active Site of O-Acetyl Serine Sulfhydrylase Reveals a Competitive-Allostery Mechanism. Singh AK, Ekka MK, Kaushik A, Pandya V, Singh RP, Banerjee S, Mittal M, Singh V, Kumaran S. Biochemistry; 2017 Sep 19; 56(37):5011-5025. PubMed ID: 28805060 [Abstract] [Full Text] [Related]
8. Serine acetyltransferase from Neisseria gonorrhoeae; structural and biochemical basis of inhibition. Oldham KEA, Prentice EJ, Summers EL, Hicks JL. Biochem J; 2022 Jan 14; 479(1):57-74. PubMed ID: 34890451 [Abstract] [Full Text] [Related]
9. Subtractive Genomics, Molecular Docking and Molecular Dynamics Simulation Revealed LpxC as a Potential Drug Target Against Multi-Drug Resistant Klebsiella pneumoniae. Ahmad S, Navid A, Akhtar AS, Azam SS, Wadood A, Pérez-Sánchez H. Interdiscip Sci; 2019 Sep 14; 11(3):508-526. PubMed ID: 29721784 [Abstract] [Full Text] [Related]
10. Modulation of Escherichia coli serine acetyltransferase catalytic activity in the cysteine synthase complex. Benoni R, De Bei O, Paredi G, Hayes CS, Franko N, Mozzarelli A, Bettati S, Campanini B. FEBS Lett; 2017 May 14; 591(9):1212-1224. PubMed ID: 28337759 [Abstract] [Full Text] [Related]
11. Allosteric site-mediated active site inhibition of PBP2a using Quercetin 3-O-rutinoside and its combination. Rani N, Vijayakumar S, P T V L, Arunachalam A. J Biomol Struct Dyn; 2016 Aug 14; 34(8):1778-96. PubMed ID: 26360629 [Abstract] [Full Text] [Related]
13. Homology modeling, structural insights and in-silico screening for selective inhibitors of mycobacterial CysE. Gupta S, Gupta V. J Biomol Struct Dyn; 2021 Mar 14; 39(5):1547-1560. PubMed ID: 32093568 [Abstract] [Full Text] [Related]
14. New insights into the structure and function of an emerging drug target CysE. Verma D, Gupta V. 3 Biotech; 2021 Aug 14; 11(8):373. PubMed ID: 34367865 [Abstract] [Full Text] [Related]
15. Structure-based mutational studies of O-acetylserine sulfhydrylase reveal the reason for the loss of cysteine synthase complex formation in Brucella abortus. Dharavath S, Raj I, Gourinath S. Biochem J; 2017 Mar 23; 474(7):1221-1239. PubMed ID: 28126739 [Abstract] [Full Text] [Related]
16. Advancements in inhibitors of crucial enzymes in the cysteine biosynthetic pathway: Serine acetyltransferase and O-acetylserine sulfhydrylase. Qin Y, Teng Y, Yang Y, Mao Z, Zhao S, Zhang N, Li X, Niu W. Chem Biol Drug Des; 2024 Jul 23; 104(1):e14573. PubMed ID: 38965664 [Abstract] [Full Text] [Related]
17. Identification of cysteine metabolism regulator (CymR)-derived pentapeptides as nanomolar inhibitors of Staphylococcus aureus O-acetyl-ʟ-serine sulfhydrylase (CysK). Pederick JL, Vandborg BC, George A, Bovermann H, Boyd JM, Freundlich JS, Bruning JB. bioRxiv; 2024 Sep 20. PubMed ID: 39345565 [Abstract] [Full Text] [Related]
18. Klebsiella pneumoniae Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering. Barnes MD, Winkler ML, Taracila MA, Page MG, Desarbre E, Kreiswirth BN, Shields RK, Nguyen MH, Clancy C, Spellberg B, Papp-Wallace KM, Bonomo RA. mBio; 2017 Oct 31; 8(5):. PubMed ID: 29089425 [Abstract] [Full Text] [Related]
19. Identification of potential inhibitors for Klebsiella pneumoniae carbapenemase-3: a molecular docking and dynamics study. Malathi K, Anbarasu A, Ramaiah S. J Biomol Struct Dyn; 2019 Oct 31; 37(17):4601-4613. PubMed ID: 30632921 [Abstract] [Full Text] [Related]
20. Structural modeling and biochemical characterization of recombinant KPN_02809, a zinc-dependent metalloprotease from Klebsiella pneumoniae MGH 78578. Wong MT, Choi SB, Kuan CS, Chua SL, Chang CH, Normi YM, See Too WC, Wahab HA, Few LL. Int J Mol Sci; 2012 Oct 31; 13(1):901-917. PubMed ID: 22312293 [Abstract] [Full Text] [Related] Page: [Next] [New Search]