These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
548 related items for PubMed ID: 31751811
21. Study of atrial activities for abnormality detection by phase rectified signal averaging technique. Maji U, Pal S, Mitra M. J Med Eng Technol; 2015; 39(5):291-302. PubMed ID: 26084877 [Abstract] [Full Text] [Related]
22. A new smart wristband equipped with an artificial intelligence algorithm to detect atrial fibrillation. Chen E, Jiang J, Su R, Gao M, Zhu S, Zhou J, Huo Y. Heart Rhythm; 2020 May; 17(5 Pt B):847-853. PubMed ID: 32354449 [Abstract] [Full Text] [Related]
23. Deep Learning Approaches to Detect Atrial Fibrillation Using Photoplethysmographic Signals: Algorithms Development Study. Kwon S, Hong J, Choi EK, Lee E, Hostallero DE, Kang WJ, Lee B, Jeong ER, Koo BK, Oh S, Yi Y. JMIR Mhealth Uhealth; 2019 Jun 06; 7(6):e12770. PubMed ID: 31199302 [Abstract] [Full Text] [Related]
24. Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy. Zhou X, Ding H, Ung B, Pickwell-MacPherson E, Zhang Y. Biomed Eng Online; 2014 Feb 17; 13(1):18. PubMed ID: 24533474 [Abstract] [Full Text] [Related]
25. A Wearable Electrocardiogram Telemonitoring System for Atrial Fibrillation Detection. Shao M, Zhou Z, Bin G, Bai Y, Wu S. Sensors (Basel); 2020 Jan 22; 20(3):. PubMed ID: 31979184 [Abstract] [Full Text] [Related]
29. The WATCH AF Trial: SmartWATCHes for Detection of Atrial Fibrillation. Dörr M, Nohturfft V, Brasier N, Bosshard E, Djurdjevic A, Gross S, Raichle CJ, Rhinisperger M, Stöckli R, Eckstein J. JACC Clin Electrophysiol; 2019 Feb 22; 5(2):199-208. PubMed ID: 30784691 [Abstract] [Full Text] [Related]
30. Accurate detection of atrial fibrillation from 12-lead ECG using deep neural network. Cai W, Chen Y, Guo J, Han B, Shi Y, Ji L, Wang J, Zhang G, Luo J. Comput Biol Med; 2020 Jan 22; 116():103378. PubMed ID: 31778896 [Abstract] [Full Text] [Related]
33. Automated Method for Discrimination of Arrhythmias Using Time, Frequency, and Nonlinear Features of Electrocardiogram Signals. Hajeb-Mohammadalipour S, Ahmadi M, Shahghadami R, Chon KH. Sensors (Basel); 2018 Jun 29; 18(7):. PubMed ID: 29966276 [Abstract] [Full Text] [Related]
34. Detection of Atrial Fibrillation in a Large Population Using Wearable Devices: The Fitbit Heart Study. Lubitz SA, Faranesh AZ, Selvaggi C, Atlas SJ, McManus DD, Singer DE, Pagoto S, McConnell MV, Pantelopoulos A, Foulkes AS. Circulation; 2022 Nov 08; 146(19):1415-1424. PubMed ID: 36148649 [Abstract] [Full Text] [Related]
35. Arrhythmia Evaluation in Wearable ECG Devices. Sadrawi M, Lin CH, Lin YT, Hsieh Y, Kuo CC, Chien JC, Haraikawa K, Abbod MF, Shieh JS. Sensors (Basel); 2017 Oct 25; 17(11):. PubMed ID: 29068369 [Abstract] [Full Text] [Related]
38. Scalable customization of atrial fibrillation detection in cardiac monitoring devices: increasing detection accuracy through personalized monitoring in large patient populations. Jang KJ, Balakrishnan G, Syed Z, Verma N. Annu Int Conf IEEE Eng Med Biol Soc; 2011 Oct 25; 2011():2184-7. PubMed ID: 22254772 [Abstract] [Full Text] [Related]
39. A Review on the State of the Art in Atrial Fibrillation Detection Enabled by Machine Learning. Rizwan A, Zoha A, Mabrouk IB, Sabbour HM, Al-Sumaiti AS, Alomainy A, Imran MA, Abbasi QH. IEEE Rev Biomed Eng; 2021 Oct 25; 14():219-239. PubMed ID: 32112683 [Abstract] [Full Text] [Related]