These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


365 related items for PubMed ID: 31756614

  • 1. Exclusive microbially driven autotrophic iron-dependent denitrification in a reactor inoculated with activated sludge.
    Tian T, Zhou K, Xuan L, Zhang JX, Li YS, Liu DF, Yu HQ.
    Water Res; 2020 Mar 01; 170():115300. PubMed ID: 31756614
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. The feasibility study of autotrophic denitrification with iron sludge produced for sulfide control.
    Wei Y, Dai J, Mackey HR, Chen GH.
    Water Res; 2017 Oct 01; 122():226-233. PubMed ID: 28601790
    [Abstract] [Full Text] [Related]

  • 4. Elucidating distinct roles of chemical reduction and autotrophic denitrification driven by three iron-based materials in nitrate removal from low carbon-to-nitrogen ratio wastewater.
    Wu P, Yang F, Lian J, Chen B, Wang Y, Meng G, Shen M, Wu H.
    Chemosphere; 2024 Aug 01; 361():142470. PubMed ID: 38810802
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Sponge iron enriches autotrophic/aerobic denitrifying bacteria to enhance denitrification in sequencing batch reactor.
    Li W, Chen X, Yang T, Zhu H, He Z, Zhao R, Chen Y.
    Bioresour Technol; 2024 Sep 01; 407():131097. PubMed ID: 38986882
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Insights into Carbon Metabolism Provided by Fluorescence In Situ Hybridization-Secondary Ion Mass Spectrometry Imaging of an Autotrophic, Nitrate-Reducing, Fe(II)-Oxidizing Enrichment Culture.
    Tominski C, Lösekann-Behrens T, Ruecker A, Hagemann N, Kleindienst S, Mueller CW, Höschen C, Kögel-Knabner I, Kappler A, Behrens S.
    Appl Environ Microbiol; 2018 May 01; 84(9):. PubMed ID: 29500258
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Metabolic Performance and Fate of Electrons during Nitrate-Reducing Fe(II) Oxidation by the Autotrophic Enrichment Culture KS Grown at Different Initial Fe/N Ratios.
    Huang J, Mellage A, Garcia JP, Glöckler D, Mahler S, Elsner M, Jakus N, Mansor M, Jiang H, Kappler A.
    Appl Environ Microbiol; 2023 Mar 29; 89(3):e0019623. PubMed ID: 36877057
    [Abstract] [Full Text] [Related]

  • 11. [Characteristics of a Combined Heterotrophic and Sulfur Autotrophic Denitrification Technology for Removal of High Nitrate in Water].
    Li X, Ma H, Huang Y, Zhu L, Yang PB, Zhu Q.
    Huan Jing Ke Xue; 2016 Jul 08; 37(7):2646-2651. PubMed ID: 29964474
    [Abstract] [Full Text] [Related]

  • 12. Autotrophic denitrification based on sulfur-iron minerals: advanced wastewater treatment technology with simultaneous nitrogen and phosphorus removal.
    Yuan Q, Gao J, Liu P, Huang Z, Li L.
    Environ Sci Pollut Res Int; 2024 Jan 08; 31(5):6766-6781. PubMed ID: 38159185
    [Abstract] [Full Text] [Related]

  • 13. High-rate iron sulfide and sulfur-coupled autotrophic denitrification system: Nutrients removal performance and microbial characterization.
    Bai Y, Wang S, Zhussupbekova A, Shvets IV, Lee PH, Zhan X.
    Water Res; 2023 Mar 01; 231():119619. PubMed ID: 36689879
    [Abstract] [Full Text] [Related]

  • 14. Phosphorus Recovery from Wastewater Prominently through a Fe(II)-P Oxidizing Pathway in the Autotrophic Iron-Dependent Denitrification Process.
    Tian T, Zhou K, Li YS, Liu DF, Yu HQ.
    Environ Sci Technol; 2020 Sep 15; 54(18):11576-11583. PubMed ID: 32790298
    [Abstract] [Full Text] [Related]

  • 15. [Effect of pH Value on Autotrophic Denitrification Process of Zero Valent Iron Substrate].
    Zhang NB, Li X, Huang Y.
    Huan Jing Ke Xue; 2017 Dec 08; 38(12):5208-5214. PubMed ID: 29964583
    [Abstract] [Full Text] [Related]

  • 16. Influence of pH, EDTA/Fe(II) ratio, and microbial culture on Fe(II)-mediated autotrophic denitrification.
    Kiskira K, Papirio S, van Hullebusch ED, Esposito G.
    Environ Sci Pollut Res Int; 2017 Sep 08; 24(26):21323-21333. PubMed ID: 28741211
    [Abstract] [Full Text] [Related]

  • 17. Nitrate Removal by a Novel Lithoautotrophic Nitrate-Reducing, Iron(II)-Oxidizing Culture Enriched from a Pyrite-Rich Limestone Aquifer.
    Jakus N, Blackwell N, Osenbrück K, Straub D, Byrne JM, Wang Z, Glöckler D, Elsner M, Lueders T, Grathwohl P, Kleindienst S, Kappler A.
    Appl Environ Microbiol; 2021 Jul 27; 87(16):e0046021. PubMed ID: 34085863
    [Abstract] [Full Text] [Related]

  • 18. Granulation of sulfur-oxidizing bacteria for autotrophic denitrification.
    Yang W, Lu H, Khanal SK, Zhao Q, Meng L, Chen GH.
    Water Res; 2016 Nov 01; 104():507-519. PubMed ID: 27589211
    [Abstract] [Full Text] [Related]

  • 19. Iron sulphides mediated autotrophic denitrification: An emerging bioprocess for nitrate pollution mitigation and sustainable wastewater treatment.
    Hu Y, Wu G, Li R, Xiao L, Zhan X.
    Water Res; 2020 Jul 15; 179():115914. PubMed ID: 32413614
    [Abstract] [Full Text] [Related]

  • 20. Achieving rapid thiosulfate-driven denitrification (TDD) in a granular sludge system.
    Qian J, Bai L, Zhang M, Chen L, Yan X, Sun R, Zhang M, Chen GH, Wu D.
    Water Res; 2021 Feb 15; 190():116716. PubMed ID: 33290906
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.