These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


496 related items for PubMed ID: 31761240

  • 1. Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering.
    Silva JC, Udangawa RN, Chen J, Mancinelli CD, Garrudo FFF, Mikael PE, Cabral JMS, Ferreira FC, Linhardt RJ.
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110291. PubMed ID: 31761240
    [Abstract] [Full Text] [Related]

  • 2. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
    Liu Y, Tian K, Hao J, Yang T, Geng X, Zhang W.
    J Mater Sci Mater Med; 2019 Apr 29; 30(5):53. PubMed ID: 31037512
    [Abstract] [Full Text] [Related]

  • 3. Biofunctionalized chondrogenic shape-memory ternary scaffolds for efficient cell-free cartilage regeneration.
    Xuan H, Hu H, Geng C, Song J, Shen Y, Lei D, Guan Q, Zhao S, You Z.
    Acta Biomater; 2020 Mar 15; 105():97-110. PubMed ID: 31953195
    [Abstract] [Full Text] [Related]

  • 4. Evaluation of the potential of kartogenin encapsulated poly(L-lactic acid-co-caprolactone)/collagen nanofibers for tracheal cartilage regeneration.
    Yin H, Wang J, Gu Z, Feng W, Gao M, Wu Y, Zheng H, He X, Mo X.
    J Biomater Appl; 2017 Sep 15; 32(3):331-341. PubMed ID: 28658997
    [Abstract] [Full Text] [Related]

  • 5. Preparation of aligned poly(glycerol sebacate) fibrous membranes for anisotropic tissue engineering.
    Wu HJ, Hu MH, Tuan-Mu HY, Hu JJ.
    Mater Sci Eng C Mater Biol Appl; 2019 Jul 15; 100():30-37. PubMed ID: 30948065
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents.
    Vogt L, Rivera LR, Liverani L, Piegat A, El Fray M, Boccaccini AR.
    Mater Sci Eng C Mater Biol Appl; 2019 Oct 15; 103():109712. PubMed ID: 31349433
    [Abstract] [Full Text] [Related]

  • 10. Electrospun PGS:PCL microfibers align human valvular interstitial cells and provide tunable scaffold anisotropy.
    Masoumi N, Larson BL, Annabi N, Kharaziha M, Zamanian B, Shapero KS, Cubberley AT, Camci-Unal G, Manning KB, Mayer JE, Khademhosseini A.
    Adv Healthc Mater; 2014 Jun 15; 3(6):929-39. PubMed ID: 24453182
    [Abstract] [Full Text] [Related]

  • 11. Coaxial electrospun PGS/PCL and PGS/PGS-PCL nanofibrous membrane containing platelet-rich plasma for skin tissue engineering.
    Shafizadeh S, Heydari P, Zargar Kharazi A, Shariati L.
    J Biomater Sci Polym Ed; 2024 Apr 15; 35(4):482-500. PubMed ID: 38190321
    [Abstract] [Full Text] [Related]

  • 12. Alginate sulfate-based hydrogel/nanofiber composite scaffold with controlled Kartogenin delivery for tissue engineering.
    Zare P, Pezeshki-Modaress M, Davachi SM, Zare P, Yazdian F, Simorgh S, Ghanbari H, Rashedi H, Bagher Z.
    Carbohydr Polym; 2021 Aug 15; 266():118123. PubMed ID: 34044939
    [Abstract] [Full Text] [Related]

  • 13. Anisotropic poly (glycerol sebacate)-poly (ϵ-caprolactone) electrospun fibers promote endothelial cell guidance.
    Gaharwar AK, Nikkhah M, Sant S, Khademhosseini A.
    Biofabrication; 2014 Dec 17; 7(1):015001. PubMed ID: 25516556
    [Abstract] [Full Text] [Related]

  • 14. Chitosan/polycaprolactone multilayer hydrogel: A sustained Kartogenin delivery model for cartilage regeneration.
    Baharlou Houreh A, Masaeli E, Nasr-Esfahani MH.
    Int J Biol Macromol; 2021 Apr 30; 177():589-600. PubMed ID: 33610607
    [Abstract] [Full Text] [Related]

  • 15. Effect of biodegradation and de novo matrix synthesis on the mechanical properties of valvular interstitial cell-seeded polyglycerol sebacate-polycaprolactone scaffolds.
    Sant S, Iyer D, Gaharwar AK, Patel A, Khademhosseini A.
    Acta Biomater; 2013 Apr 30; 9(4):5963-73. PubMed ID: 23168222
    [Abstract] [Full Text] [Related]

  • 16. Enhancement of rotator cuff tendon-bone healing using combined aligned electrospun fibrous membranes and kartogenin.
    Zhu Q, Ma Z, Li H, Wang H, He Y.
    RSC Adv; 2019 May 14; 9(27):15582-15592. PubMed ID: 35514830
    [Abstract] [Full Text] [Related]

  • 17. Electrospun cartilage-derived matrix scaffolds for cartilage tissue engineering.
    Garrigues NW, Little D, Sanchez-Adams J, Ruch DS, Guilak F.
    J Biomed Mater Res A; 2014 Nov 14; 102(11):3998-4008. PubMed ID: 24375991
    [Abstract] [Full Text] [Related]

  • 18. Fabrication and characterization of tough elastomeric fibrous scaffolds for tissue engineering applications.
    Sant S, Khademhosseini A.
    Annu Int Conf IEEE Eng Med Biol Soc; 2010 Nov 14; 2010():3546-8. PubMed ID: 21096824
    [Abstract] [Full Text] [Related]

  • 19. Kartogenin Enhances Chondrogenic Differentiation of MSCs in 3D Tri-Copolymer Scaffolds and the Self-Designed Bioreactor System.
    Chen CY, Li C, Ke CJ, Sun JS, Lin FH.
    Biomolecules; 2021 Jan 16; 11(1):. PubMed ID: 33467170
    [Abstract] [Full Text] [Related]

  • 20. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering.
    Lin D, Yang K, Tang W, Liu Y, Yuan Y, Liu C.
    Colloids Surf B Biointerfaces; 2015 Jul 01; 131():1-11. PubMed ID: 25935647
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.