These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 31765167

  • 1. Reversible Tuning of the Plasmoelectric Effect in Noble Metal Nanostructures Through Manipulation of Organic Ligand Energy Levels.
    Liyanage T, Nagaraju M, Johnson M, Muhoberac BB, Sardar R.
    Nano Lett; 2020 Jan 08; 20(1):192-200. PubMed ID: 31765167
    [Abstract] [Full Text] [Related]

  • 2. Hybrid Metal-Ligand Interfacial Dipole Engineering of Functional Plasmonic Nanostructures for Extraordinary Responses of Optoelectronic Properties.
    Hati S, Yang X, Gupta P, Muhoberac BB, Pu J, Zhang J, Sardar R.
    ACS Nano; 2023 Sep 12; 17(17):17499-17515. PubMed ID: 37579222
    [Abstract] [Full Text] [Related]

  • 3. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA.
    Acc Chem Res; 2008 Dec 12; 41(12):1578-86. PubMed ID: 18447366
    [Abstract] [Full Text] [Related]

  • 4. Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals.
    Zhou S, Pi X, Ni Z, Ding Y, Jiang Y, Jin C, Delerue C, Yang D, Nozaki T.
    ACS Nano; 2015 Jan 27; 9(1):378-86. PubMed ID: 25551330
    [Abstract] [Full Text] [Related]

  • 5. Modulating the Charge Transfer Plasmon in Bridged Au Core-Satellite Homometallic Nanostructures.
    Wang Y, Jia J, Zhang J, Xiao R, Xu W, Feng Y.
    Small; 2023 Jul 27; 19(29):e2207907. PubMed ID: 37052515
    [Abstract] [Full Text] [Related]

  • 6. Electronic Structure-Dependent Surface Plasmon Resonance in Single Au-Fe Nanoalloys.
    Alexander DTL, Forrer D, Rossi E, Lidorikis E, Agnoli S, Bernasconi GD, Butet J, Martin OJF, Amendola V.
    Nano Lett; 2019 Aug 14; 19(8):5754-5761. PubMed ID: 31348861
    [Abstract] [Full Text] [Related]

  • 7. Capping Ligand Size-Dependent LSPR Property Based on DNA Nanostructure-Mediated Morphological Evolution of Gold Nanorods for Ultrasensitive Visualization of Target DNA.
    He MQ, Chen S, Meng J, Shi W, Wang K, Yu YL, Wang JH.
    Anal Chem; 2020 May 19; 92(10):7054-7061. PubMed ID: 32337976
    [Abstract] [Full Text] [Related]

  • 8. Dewetting Metal Nanofilms-Effect of Substrate on Refractive Index Sensitivity of Nanoplasmonic Gold.
    Bhalla N, Jain A, Lee Y, Shen AQ, Lee D.
    Nanomaterials (Basel); 2019 Oct 27; 9(11):. PubMed ID: 31717894
    [Abstract] [Full Text] [Related]

  • 9. Plasmoelectronic-Based Ultrasensitive Assay of Tumor Suppressor microRNAs Directly in Patient Plasma: Design of Highly Specific Early Cancer Diagnostic Technology.
    Liyanage T, Masterson AN, Oyem HH, Kaimakliotis H, Nguyen H, Sardar R.
    Anal Chem; 2019 Feb 05; 91(3):1894-1903. PubMed ID: 30608133
    [Abstract] [Full Text] [Related]

  • 10. Controlled Synthesis of Au Nanocrystals-Metal Selenide Hybrid Nanostructures toward Plasmon-Enhanced Photoelectrochemical Energy Conversion.
    Tang L, Liang S, Li JB, Zhang D, Chen WB, Yang ZJ, Xiao S, Wang QQ.
    Nanomaterials (Basel); 2020 Mar 20; 10(3):. PubMed ID: 32245031
    [Abstract] [Full Text] [Related]

  • 11. Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications.
    Jiang R, Li B, Fang C, Wang J.
    Adv Mater; 2014 Aug 20; 26(31):5274-309. PubMed ID: 24753398
    [Abstract] [Full Text] [Related]

  • 12. Tuning Chemical Interface Damping: Interfacial Electronic Effects of Adsorbate Molecules and Sharp Tips of Single Gold Bipyramids.
    Lee SY, Tsalu PV, Kim GW, Seo MJ, Hong JW, Ha JW.
    Nano Lett; 2019 Apr 10; 19(4):2568-2574. PubMed ID: 30856334
    [Abstract] [Full Text] [Related]

  • 13. Pt-Au Triangular Nanoprisms with Strong Dipole Plasmon Resonance for Hydrogen Generation Studied by Single-Particle Spectroscopy.
    Lou Z, Fujitsuka M, Majima T.
    ACS Nano; 2016 Jun 28; 10(6):6299-305. PubMed ID: 27212221
    [Abstract] [Full Text] [Related]

  • 14. Hydride Doping of Chemically Modified Gold-Based Superatoms.
    Takano S, Hasegawa S, Suyama M, Tsukuda T.
    Acc Chem Res; 2018 Dec 18; 51(12):3074-3083. PubMed ID: 30427181
    [Abstract] [Full Text] [Related]

  • 15. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.
    Linic S, Christopher P, Xin H, Marimuthu A.
    Acc Chem Res; 2013 Aug 20; 46(8):1890-9. PubMed ID: 23750539
    [Abstract] [Full Text] [Related]

  • 16. Localized surface plasmon resonances arising from free carriers in doped quantum dots.
    Luther JM, Jain PK, Ewers T, Alivisatos AP.
    Nat Mater; 2011 May 20; 10(5):361-6. PubMed ID: 21478881
    [Abstract] [Full Text] [Related]

  • 17. Tuning the localized surface plasmon resonance in Cu(2-x)Se nanocrystals by postsynthetic ligand exchange.
    Balitskii OA, Sytnyk M, Stangl J, Primetzhofer D, Groiss H, Heiss W.
    ACS Appl Mater Interfaces; 2014 Oct 22; 6(20):17770-5. PubMed ID: 25233007
    [Abstract] [Full Text] [Related]

  • 18. Enhancement of adjustable localized surface plasmon resonance in ZnO nanocrystals via a dual doping approach.
    Yibi Y, Chen J, Xue J, Song J, Zeng H.
    Sci Bull (Beijing); 2017 May 30; 62(10):693-699. PubMed ID: 36659440
    [Abstract] [Full Text] [Related]

  • 19. Ultrathin Plasmonic Tungsten Oxide Quantum Wells with Controllable Free Carrier Densities.
    Prusty G, Lee JT, Seifert S, Muhoberac BB, Sardar R.
    J Am Chem Soc; 2020 Apr 01; 142(13):5938-5942. PubMed ID: 32178512
    [Abstract] [Full Text] [Related]

  • 20. Birth of the localized surface plasmon resonance in monolayer-protected gold nanoclusters.
    Malola S, Lehtovaara L, Enkovaara J, Häkkinen H.
    ACS Nano; 2013 Nov 26; 7(11):10263-70. PubMed ID: 24107127
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.