These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


229 related items for PubMed ID: 31772053

  • 21. An evolutionarily conserved coiled-coil protein implicated in polycystic kidney disease is involved in basal body duplication and flagellar biogenesis in Trypanosoma brucei.
    Morgan GW, Denny PW, Vaughan S, Goulding D, Jeffries TR, Smith DF, Gull K, Field MC.
    Mol Cell Biol; 2005 May; 25(9):3774-83. PubMed ID: 15831481
    [Abstract] [Full Text] [Related]

  • 22. Flagellar morphogenesis: protein targeting and assembly in the paraflagellar rod of trypanosomes.
    Bastin P, MacRae TH, Francis SB, Matthews KR, Gull K.
    Mol Cell Biol; 1999 Dec; 19(12):8191-200. PubMed ID: 10567544
    [Abstract] [Full Text] [Related]

  • 23. Length-dependent disassembly maintains four different flagellar lengths in Giardia.
    McInally SG, Kondev J, Dawson SC.
    Elife; 2019 Dec 19; 8():. PubMed ID: 31855176
    [Abstract] [Full Text] [Related]

  • 24. The evolutionary expansion of the trypanosomatid flagellates.
    Vickerman K.
    Int J Parasitol; 1994 Dec 19; 24(8):1317-31. PubMed ID: 7729984
    [Abstract] [Full Text] [Related]

  • 25. Lineage-specific activities of a multipotent mitochondrion of trypanosomatid flagellates.
    Škodová-Sveráková I, Verner Z, Skalický T, Votýpka J, Horváth A, Lukeš J.
    Mol Microbiol; 2015 Apr 19; 96(1):55-67. PubMed ID: 25557487
    [Abstract] [Full Text] [Related]

  • 26. TFPP: an SVM-based tool for recognizing flagellar proteins in Trypanosoma brucei.
    Zhang X, Shen Y, Ding G, Tian Y, Liu Z, Li B, Wang Y, Jiang C.
    PLoS One; 2013 Apr 19; 8(1):e54032. PubMed ID: 23349782
    [Abstract] [Full Text] [Related]

  • 27. Life cycle of Blastocrithidia papi sp. n. (Kinetoplastea, Trypanosomatidae) in Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae).
    Frolov AO, Malysheva MN, Ganyukova AI, Yurchenko V, Kostygov AY.
    Eur J Protistol; 2017 Feb 19; 57():85-98. PubMed ID: 28073072
    [Abstract] [Full Text] [Related]

  • 28. Minicircle Kinetoplast Genome of Insect Trypanosomatid Leptomonas pyrrhocoris.
    Gerasimov ES, Gasparyan AA, Litus IA, Logacheva MD, Kolesnikov AA.
    Biochemistry (Mosc); 2017 May 19; 82(5):572-578. PubMed ID: 28601067
    [Abstract] [Full Text] [Related]

  • 29. Intraflagellar transport during assembly of flagella of different length in Trypanosoma brucei isolated from tsetse flies.
    Bertiaux E, Mallet A, Rotureau B, Bastin P.
    J Cell Sci; 2020 Sep 23; 133(18):. PubMed ID: 32843573
    [Abstract] [Full Text] [Related]

  • 30. Flagellar length control system: testing a simple model based on intraflagellar transport and turnover.
    Marshall WF, Qin H, Rodrigo Brenni M, Rosenbaum JL.
    Mol Biol Cell; 2005 Jan 23; 16(1):270-8. PubMed ID: 15496456
    [Abstract] [Full Text] [Related]

  • 31. Flagellum elongation is required for correct structure, orientation and function of the flagellar pocket in Trypanosoma brucei.
    Absalon S, Blisnick T, Bonhivers M, Kohl L, Cayet N, Toutirais G, Buisson J, Robinson D, Bastin P.
    J Cell Sci; 2008 Nov 15; 121(Pt 22):3704-16. PubMed ID: 18940910
    [Abstract] [Full Text] [Related]

  • 32. Assembly of the Leishmania amazonensis flagellum during cell differentiation.
    Gadelha AP, Cunha-e-Silva NL, de Souza W.
    J Struct Biol; 2013 Nov 15; 184(2):280-92. PubMed ID: 24041804
    [Abstract] [Full Text] [Related]

  • 33. Clathrin-dependent targeting of receptors to the flagellar pocket of procyclic-form Trypanosoma brucei.
    Hung CH, Qiao X, Lee PT, Lee MG.
    Eukaryot Cell; 2004 Aug 15; 3(4):1004-14. PubMed ID: 15302833
    [Abstract] [Full Text] [Related]

  • 34. Non-equivalence in old- and new-flagellum daughter cells of a proliferative division in Trypanosoma brucei.
    Abeywickrema M, Vachova H, Farr H, Mohr T, Wheeler RJ, Lai DH, Vaughan S, Gull K, Sunter JD, Varga V.
    Mol Microbiol; 2019 Sep 15; 112(3):1024-1040. PubMed ID: 31286583
    [Abstract] [Full Text] [Related]

  • 35. A novel microtubule-depolymerizing kinesin involved in length control of a eukaryotic flagellum.
    Blaineau C, Tessier M, Dubessay P, Tasse L, Crobu L, Pagès M, Bastien P.
    Curr Biol; 2007 May 01; 17(9):778-82. PubMed ID: 17433682
    [Abstract] [Full Text] [Related]

  • 36. Independent analysis of the flagellum surface and matrix proteomes provides insight into flagellum signaling in mammalian-infectious Trypanosoma brucei.
    Oberholzer M, Langousis G, Nguyen HT, Saada EA, Shimogawa MM, Jonsson ZO, Nguyen SM, Wohlschlegel JA, Hill KL.
    Mol Cell Proteomics; 2011 Oct 01; 10(10):M111.010538. PubMed ID: 21685506
    [Abstract] [Full Text] [Related]

  • 37. Redistribution of FLAgellar Member 8 during the trypanosome life cycle: Consequences for cell fate prediction.
    Calvo-Álvarez E, Bonnefoy S, Salles A, Benson FE, McKean PG, Bastin P, Rotureau B.
    Cell Microbiol; 2021 Sep 01; 23(9):e13347. PubMed ID: 33896083
    [Abstract] [Full Text] [Related]

  • 38. An intracellular membrane junction consisting of flagellum adhesion glycoproteins links flagellum biogenesis to cell morphogenesis in Trypanosoma brucei.
    Sun SY, Wang C, Yuan YA, He CY.
    J Cell Sci; 2013 Jan 15; 126(Pt 2):520-31. PubMed ID: 23178943
    [Abstract] [Full Text] [Related]

  • 39. The bi-lobe-associated LRRP1 regulates Ran activity in Trypanosoma brucei.
    Brasseur A, Bayat S, Chua XL, Zhang Y, Zhou Q, Low BC, He CY.
    J Cell Sci; 2014 Nov 15; 127(Pt 22):4846-56. PubMed ID: 25217630
    [Abstract] [Full Text] [Related]

  • 40. A sticky situation: When trypanosomatids attach to insect tissues.
    Povelones ML, Holmes NA, Povelones M.
    PLoS Pathog; 2023 Dec 15; 19(12):e1011854. PubMed ID: 38128049
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.