These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
165 related items for PubMed ID: 31784220
21. A label-free visual aptasensor for zearalenone detection based on target-responsive aptamer-cross-linked hydrogel and color change of gold nanoparticles. Liu M, Zhang J, Liu S, Li B. Food Chem; 2022 Sep 30; 389():133078. PubMed ID: 35490524 [Abstract] [Full Text] [Related]
22. A colorimetric gold nanoparticle aggregation assay for malathion based on target-induced hairpin structure assembly of complementary strands of aptamer. Abnous K, Danesh NM, Ramezani M, Alibolandi M, Emrani AS, Lavaee P, Taghdisi SM. Mikrochim Acta; 2018 Mar 12; 185(4):216. PubMed ID: 29594570 [Abstract] [Full Text] [Related]
23. An aptamer-based colorimetric lead(II) assay based on the use of gold nanoparticles modified with dsDNA and exonuclease I. Shahdordizadeh M, Yazdian-Robati R, Ansari N, Ramezani M, Abnous K, Taghdisi SM. Mikrochim Acta; 2018 Feb 01; 185(2):151. PubMed ID: 29594698 [Abstract] [Full Text] [Related]
24. A hairpin-type DNA probe for direct colorimetric detection of endonuclease activity and inhibition based on the deaggregation of gold nanoparticles. Sang F, Li G, Li J, Pan J, Zhang Z, Zhang X. Mikrochim Acta; 2019 Jan 11; 186(2):100. PubMed ID: 30635742 [Abstract] [Full Text] [Related]
25. Highly Selective, Aptamer-Based, Ultrasensitive Nanogold Colorimetric Smartphone Readout for Detection of Cd(II). Xu L, Liang J, Wang Y, Ren S, Wu J, Zhou H, Gao Z. Molecules; 2019 Jul 29; 24(15):. PubMed ID: 31362377 [Abstract] [Full Text] [Related]
26. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples. Li X, Cheng R, Shi H, Tang B, Xiao H, Zhao G. J Hazard Mater; 2016 Mar 05; 304():474-80. PubMed ID: 26619046 [Abstract] [Full Text] [Related]
27. Portable and quantitative detection of carbendazim based on the readout of a thermometer. Fu R, Zhou J, Liu Y, Wang Y, Liu H, Pang J, Cui Y, Zhao Q, Wang C, Li Z, Jiao B, He Y. Food Chem; 2021 Jul 30; 351():129292. PubMed ID: 33626465 [Abstract] [Full Text] [Related]
28. Colorimetric determination of DNA using an aptamer and plasmonic nanoplatform. Sang F, Yin S, Pan J, Liu D, Zhang Z. Mikrochim Acta; 2020 Jun 17; 187(7):393. PubMed ID: 32556616 [Abstract] [Full Text] [Related]
29. Ultrasensitive aptamer biosensor for arsenic(III) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles. Wu Y, Liu L, Zhan S, Wang F, Zhou P. Analyst; 2012 Sep 21; 137(18):4171-8. PubMed ID: 22842645 [Abstract] [Full Text] [Related]
30. Label-free, liquid crystal-based aptasensor for detecting carbendazim at picomolar levels. Ryu JJ, Jang CH. Food Chem; 2024 Jul 01; 445():138789. PubMed ID: 38394911 [Abstract] [Full Text] [Related]
31. Fabrication of Gold Nanoparticles/Graphene-PDDA Nanohybrids for Bio-detection by SERS Nanotechnology. Mevold AH, Hsu WW, Hardiansyah A, Huang LY, Yang MC, Liu TY, Chan TY, Wang KS, Su YA, Jeng RJ, Wang JK, Wang YL. Nanoscale Res Lett; 2015 Dec 01; 10(1):397. PubMed ID: 26459427 [Abstract] [Full Text] [Related]
32. Ultrasensitive colorimetric strategy for Hg2+ detection based on T-Hg2+-T configuration and target recycling amplification. Sang F, Yin S, Pan J, Zhang Z. Anal Bioanal Chem; 2021 Nov 01; 413(28):7001-7007. PubMed ID: 34532763 [Abstract] [Full Text] [Related]
33. Fluorescent aptasensor for ofloxacin detection based on the aggregation of gold nanoparticles and its effect on quenching the fluorescence of Rhodamine B. Yan Z, Yi H, Wang L, Zhou X, Yan R, Zhang D, Wang S, Su L, Zhou S. Spectrochim Acta A Mol Biomol Spectrosc; 2019 Oct 05; 221():117203. PubMed ID: 31174139 [Abstract] [Full Text] [Related]
34. Aptamer-based fluorometric determination for mucin 1 using gold nanoparticles and carbon dots. Wang W, Wang Y, Pan H, Cheddah S, Yan C. Mikrochim Acta; 2019 Jul 17; 186(8):544. PubMed ID: 31317323 [Abstract] [Full Text] [Related]
35. Colorimetric theophylline aggregation assay using an RNA aptamer and non-crosslinking gold nanoparticles. Ma X, Guo Z, Mao Z, Tang Y, Miao P. Mikrochim Acta; 2017 Dec 07; 185(1):33. PubMed ID: 29594625 [Abstract] [Full Text] [Related]
36. The comparison of different gold nanoparticles/graphene nanosheets hybrid nanocomposites in electrochemical performance and the construction of a sensitive uric acid electrochemical sensor with novel hybrid nanocomposites. Xue Y, Zhao H, Wu Z, Li X, He Y, Yuan Z. Biosens Bioelectron; 2011 Nov 15; 29(1):102-8. PubMed ID: 21871789 [Abstract] [Full Text] [Related]
37. Visual detection of tropomyosin, a major shrimp allergenic protein using gold nanoparticles (AuNPs)-assisted colorimetric aptasensor. Pavase TR, Lin H, Soomro MA, Zheng H, Li X, Wang K, Li Z. Mar Life Sci Technol; 2021 Aug 15; 3(3):382-394. PubMed ID: 37073291 [Abstract] [Full Text] [Related]
38. Colorimetric Aptasensor for the Visual and Microplate Determination of Clusterin in Human Urine Based on Aggregation Characteristics of Gold Nanoparticles. Wen L, Du X, Liu T, Meng W, Li T, Li M, Zhang M. ACS Omega; 2023 May 09; 8(18):16000-16008. PubMed ID: 37179603 [Abstract] [Full Text] [Related]
39. Aptamer-based Colorimetric Biosensing of Ochratoxin A in Fortified White Grape Wine Sample Using Unmodified Gold Nanoparticles. Yin X, Wang S, Liu X, He C, Tang Y, Li Q, Liu J, Su H, Tan T, Dong Y. Anal Sci; 2017 May 09; 33(6):659-664. PubMed ID: 28603182 [Abstract] [Full Text] [Related]
40. General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe. Li J, Fu HE, Wu LJ, Zheng AX, Chen GN, Yang HH. Anal Chem; 2012 Jun 19; 84(12):5309-15. PubMed ID: 22642720 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]