These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
324 related items for PubMed ID: 31785527
1. Estimating the daily PM2.5 concentration in the Beijing-Tianjin-Hebei region using a random forest model with a 0.01° × 0.01° spatial resolution. Zhao C, Wang Q, Ban J, Liu Z, Zhang Y, Ma R, Li S, Li T. Environ Int; 2020 Jan; 134():105297. PubMed ID: 31785527 [Abstract] [Full Text] [Related]
2. Satellite-based high-resolution PM2.5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model. He Q, Huang B. Environ Pollut; 2018 May; 236():1027-1037. PubMed ID: 29455919 [Abstract] [Full Text] [Related]
3. [High-resolution Estimation of Spatio-temporal Variation in PM2.5 Concentrations in the Beijing-Tianjin-Hebei Region]. Yang XH, Song CJ, Fan LH, Zhang LY, Wei Q, Li FX, Wang LY, Wang W. Huan Jing Ke Xue; 2021 Sep 08; 42(9):4083-4094. PubMed ID: 34414707 [Abstract] [Full Text] [Related]
4. Predicting ground-level PM2.5 concentrations in the Beijing-Tianjin-Hebei region: A hybrid remote sensing and machine learning approach. Li X, Zhang X. Environ Pollut; 2019 Jun 08; 249():735-749. PubMed ID: 30933771 [Abstract] [Full Text] [Related]
6. The relationships between PM2.5 and aerosol optical depth (AOD) in mainland China: About and behind the spatio-temporal variations. Yang Q, Yuan Q, Yue L, Li T, Shen H, Zhang L. Environ Pollut; 2019 May 08; 248():526-535. PubMed ID: 30831349 [Abstract] [Full Text] [Related]
9. Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China. Gao J, Wang K, Wang Y, Liu S, Zhu C, Hao J, Liu H, Hua S, Tian H. Environ Pollut; 2018 Feb 08; 233():714-724. PubMed ID: 29126093 [Abstract] [Full Text] [Related]
11. Hourly Seamless Surface O3 Estimates by Integrating the Chemical Transport and Machine Learning Models in the Beijing-Tianjin-Hebei Region. Xue W, Zhang J, Hu X, Yang Z, Wei J. Int J Environ Res Public Health; 2022 Jul 12; 19(14):. PubMed ID: 35886364 [Abstract] [Full Text] [Related]
14. Improvement in hourly PM2.5 estimations for the Beijing-Tianjin-Hebei region by introducing an aerosol modeling product from MASINGAR. Zhang Y, Wang W, Ma Y, Wu L, Xu W, Li J. Environ Pollut; 2020 Sep 12; 264():114691. PubMed ID: 32388304 [Abstract] [Full Text] [Related]
15. Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015. Jung CR, Hwang BF, Chen WT. Environ Pollut; 2018 Jun 12; 237():1000-1010. PubMed ID: 29157969 [Abstract] [Full Text] [Related]
16. Meteorological Influences on Spatiotemporal Variation of PM2.5 Concentrations in Atmospheric Pollution Transmission Channel Cities of the Beijing-Tianjin-Hebei Region, China. Wang S, Gao J, Guo L, Nie X, Xiao X. Int J Environ Res Public Health; 2022 Jan 30; 19(3):. PubMed ID: 35162629 [Abstract] [Full Text] [Related]
19. New interpretable deep learning model to monitor real-time PM2.5 concentrations from satellite data. Yan X, Zang Z, Luo N, Jiang Y, Li Z. Environ Int; 2020 Nov 30; 144():106060. PubMed ID: 32920497 [Abstract] [Full Text] [Related]