These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


154 related items for PubMed ID: 31789333

  • 1. Switching to a "turn-on" fluorescent probe for selective monitoring of cyanide in food samples and living systems.
    Wu H, Chen M, Xu Q, Zhang Y, Liu P, Li W, Fan S.
    Chem Commun (Camb); 2019 Dec 12; 55(100):15137-15140. PubMed ID: 31789333
    [Abstract] [Full Text] [Related]

  • 2. A novel ratiometric near-infrared fluorescent probe for monitoring cyanide in food samples.
    Long L, Han Y, Yuan X, Cao S, Liu W, Chen Q, Wang K, Han Z.
    Food Chem; 2020 Nov 30; 331():127359. PubMed ID: 32580128
    [Abstract] [Full Text] [Related]

  • 3. Ratiometric detection and monitoring of cyanide in biological, environmental and food samples by a novel triphenylamine-xhantane based fluorescent probe.
    Sert A, Erdemir S, Malkondu S.
    Anal Chim Acta; 2024 Sep 01; 1320():343000. PubMed ID: 39142780
    [Abstract] [Full Text] [Related]

  • 4. Reaction-based fluorescent probe for detection of endogenous cyanide in real biological samples.
    Long L, Wang L, Wu Y, Gong A, Da Z, Zhang C, Han Z.
    Chem Asian J; 2014 Nov 01; 9(11):3291-8. PubMed ID: 25156974
    [Abstract] [Full Text] [Related]

  • 5. Rational design and application of a fluorogenic chemodosimeter for selective detection of cyanide in an aqueous solution via excimer formation.
    Kumar PS, Lakshmi PR, Elango KP.
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Oct 05; 221():117172. PubMed ID: 31174138
    [Abstract] [Full Text] [Related]

  • 6. A simple fluorophore-imine ensemble for colorimetric and fluorescent detection of CN- and HS- in aqueous solution.
    Lakshmi PR, Kumar PS, Elango KP.
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar 15; 229():117974. PubMed ID: 31927478
    [Abstract] [Full Text] [Related]

  • 7. Bioimaging and detecting endogenous and exogenous cyanide in foods, living cells and mice based on a turn-on mitochondria-targeted fluorescent probe.
    Wu H, Xu Q, Yin K, Liu Z, Xie T, Wang L, Li Y, Zhang M, Lv X, Li W, Fan S.
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov 15; 301():122957. PubMed ID: 37295383
    [Abstract] [Full Text] [Related]

  • 8. Highly selective turn-on fluorescent probe for detection of cyanide in water and food materials.
    Mahalakshmi G, SaravanaKumar P, RajaLakshmi P, Seenivasaperumal M, Elango KP.
    Methods Appl Fluoresc; 2019 Mar 27; 7(2):025003. PubMed ID: 30822766
    [Abstract] [Full Text] [Related]

  • 9. A highly selective and sensitive dual-mode sensor for colorimetric and turn-on fluorescent detection of cyanide in water, agro-products and living cells.
    Guo Z, Niu Q, Yang Q, Li T, Chi H.
    Anal Chim Acta; 2019 Aug 13; 1065():113-123. PubMed ID: 31005143
    [Abstract] [Full Text] [Related]

  • 10. Highly selective optical and reversible dual-path chemosensor for cyanide detection and its application in live cells imaging.
    Keshav K, Torawane P, Kumar Kumawat M, Tayade K, Sahoo SK, Srivastava R, Kuwar A.
    Biosens Bioelectron; 2017 Jun 15; 92():95-100. PubMed ID: 28189907
    [Abstract] [Full Text] [Related]

  • 11. A ratiometric chemodosimeter for highly selective naked-eye and fluorogenic detection of cyanide.
    Lin WC, Hu JW, Chen KY.
    Anal Chim Acta; 2015 Sep 17; 893():91-100. PubMed ID: 26398427
    [Abstract] [Full Text] [Related]

  • 12. A new colorimetric and fluorescent probe based on Rhodamine B hydrazone derivatives for cyanide and Cu2+ in aqueous media and its application in real life.
    Long C, Hu JH, Fu QQ, Ni PW.
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug 05; 219():297-306. PubMed ID: 31051424
    [Abstract] [Full Text] [Related]

  • 13. A Zn2+-specific fluorescent molecular probe for the selective detection of endogenous cyanide in biorelevant samples.
    Divya KP, Sreejith S, Balakrishna B, Jayamurthy P, Anees P, Ajayaghosh A.
    Chem Commun (Camb); 2010 Sep 07; 46(33):6069-71. PubMed ID: 20644880
    [Abstract] [Full Text] [Related]

  • 14. A colorimetric and ratiometric fluorescent probe for cyanide sensing in aqueous media and live cells.
    Hou L, Li F, Guo J, Zhang X, Kong X, Cui XT, Dong C, Wang Y, Shuang S.
    J Mater Chem B; 2019 Jul 31; 7(30):4620-4629. PubMed ID: 31364679
    [Abstract] [Full Text] [Related]

  • 15. Selective visualization of cyanide in food, living cells and zebrafish by a mitochondria targeted NIR-emitting fluorescent probe.
    Dong Z, Liang W, Ren H, Zhang Y, Wang H, Wang Y.
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct 15; 279():121485. PubMed ID: 35696972
    [Abstract] [Full Text] [Related]

  • 16. A fluorescent turn-on probe based on benzo [e] indolium for cyanide ion in water with high selectivity.
    Sun Y, Fan S, Zhao D, Duan L, Li R.
    J Fluoresc; 2013 Nov 15; 23(6):1255-61. PubMed ID: 23828514
    [Abstract] [Full Text] [Related]

  • 17. Blue-emitting copper nanoparticles as a fluorescent probe for detection of cyanide ions.
    Momeni S, Ahmadi R, Safavi A, Nabipour I.
    Talanta; 2017 Dec 01; 175():514-521. PubMed ID: 28842026
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. A Near-Infrared Fluorescence Chemosensor Based on Isothiocyanate-Aza-BODIPY for Cyanide Detection at the Parts per Billion Level: Applications in Buffer Media and Living Cell Imaging.
    Piyanuch P, Sirirak J, Kamkaew A, Weeranantanapan O, Promarak V, Burgess K, Wanichacheva N.
    Chempluschem; 2019 Mar 01; 84(3):252-259. PubMed ID: 31950759
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.