These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
229 related items for PubMed ID: 31795225
1. Biomimetic Synthesis of Nanocrystalline Hydroxyapatite Composites: Therapeutic Potential and Effects on Bone Regeneration. Fang CH, Lin YW, Lin FH, Sun JS, Chao YH, Lin HY, Chang ZC. Int J Mol Sci; 2019 Nov 28; 20(23):. PubMed ID: 31795225 [Abstract] [Full Text] [Related]
2. Constructing a biomimetic nanocomposite with the in situ deposition of spherical hydroxyapatite nanoparticles to induce bone regeneration. Song T, Zhao F, Wang Y, Li D, Lei N, Li X, Xiao Y, Zhang X. J Mater Chem B; 2021 Mar 17; 9(10):2469-2482. PubMed ID: 33646220 [Abstract] [Full Text] [Related]
4. Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration. Im O, Li J, Wang M, Zhang LG, Keidar M. Int J Nanomedicine; 2012 Mar 17; 7():2087-99. PubMed ID: 22619545 [Abstract] [Full Text] [Related]
5. Injectable thermo-responsive Poloxamer hydrogel/methacrylate gelatin microgels stimulates bone regeneration through biomimetic programmed release of SDF-1a and IGF-1. Zhong Q, Wang D, Mai H, Chen R, Xu Y, Lei M, Xie J, Tang Z, Fu J, Chen Y, Wang J, Shi Z, Cheng H. Int J Biol Macromol; 2024 Jun 17; 271(Pt 2):132742. PubMed ID: 38821297 [Abstract] [Full Text] [Related]
7. Microspheres of alginate encapsulated minocycline-loaded nanocrystalline carbonated hydroxyapatite: therapeutic potential and effects on bone regeneration. Calasans-Maia MD, Barboza Junior CAB, Soriano-Souza CA, Alves ATNN, Uzeda MJP, Martinez-Zelaya VR, Mavropoulos E, Rocha Leão MH, de Santana RB, Granjeiro JM, Rossi AM. Int J Nanomedicine; 2019 Jun 17; 14():4559-4571. PubMed ID: 31417258 [Abstract] [Full Text] [Related]
8. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix. Cholas R, Kunjalukkal Padmanabhan S, Gervaso F, Udayan G, Monaco G, Sannino A, Licciulli A. Mater Sci Eng C Mater Biol Appl; 2016 Jun 17; 63():499-505. PubMed ID: 27040244 [Abstract] [Full Text] [Related]
9. In vitro and in vivo evaluations of nanocrystalline Zn-doped carbonated hydroxyapatite/alginate microspheres: zinc and calcium bioavailability and bone regeneration. Martinez-Zelaya VR, Zarranz L, Herrera EZ, Alves AT, Uzeda MJ, Mavropoulos E, Rossi AL, Mello A, Granjeiro JM, Calasans-Maia MD, Rossi AM. Int J Nanomedicine; 2019 Jun 17; 14():3471-3490. PubMed ID: 31190805 [Abstract] [Full Text] [Related]
10. Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Shen X, Zhang Y, Gu Y, Xu Y, Liu Y, Li B, Chen L. Biomaterials; 2016 Nov 17; 106():205-16. PubMed ID: 27566869 [Abstract] [Full Text] [Related]
11. Direct scaffolding of biomimetic hydroxyapatite-gelatin nanocomposites using aminosilane cross-linker for bone regeneration. Chiu CK, Ferreira J, Luo TJ, Geng H, Lin FC, Ko CC. J Mater Sci Mater Med; 2012 Sep 17; 23(9):2115-26. PubMed ID: 22669282 [Abstract] [Full Text] [Related]
13. Synthesis and Evaluation of BMMSC-seeded BMP-6/nHAG/GMS Scaffolds for Bone Regeneration. Li X, Zhang R, Tan X, Li B, Liu Y, Wang X. Int J Med Sci; 2019 Sep 17; 16(7):1007-1017. PubMed ID: 31341414 [Abstract] [Full Text] [Related]
14. Biomimetic hydroxyapatite/poly xylitol sebacic adibate/vitamin K nanocomposite for enhancing bone regeneration. Dai Z, Dang M, Zhang W, Murugan S, Teh SW, Pan H. Artif Cells Nanomed Biotechnol; 2019 Dec 17; 47(1):1898-1907. PubMed ID: 31066314 [Abstract] [Full Text] [Related]
15. Incorporation of stromal cell-derived factor-1α in PCL/gelatin electrospun membranes for guided bone regeneration. Ji W, Yang F, Ma J, Bouma MJ, Boerman OC, Chen Z, van den Beucken JJ, Jansen JA. Biomaterials; 2013 Jan 17; 34(3):735-45. PubMed ID: 23117215 [Abstract] [Full Text] [Related]
16. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Kim HW, Kim HE, Salih V. Biomaterials; 2005 Sep 17; 26(25):5221-30. PubMed ID: 15792549 [Abstract] [Full Text] [Related]
17. In-situ hybridization of calcium silicate and hydroxyapatite-gelatin nanocomposites enhances physical property and in vitro osteogenesis. Chiu CK, Lee DJ, Chen H, Chow LC, Ko CC. J Mater Sci Mater Med; 2015 Feb 17; 26(2):92. PubMed ID: 25649517 [Abstract] [Full Text] [Related]
18. Hierarchical Nanofibrous Microspheres with Controlled Growth Factor Delivery for Bone Regeneration. Ma C, Jing Y, Sun H, Liu X. Adv Healthc Mater; 2015 Dec 09; 4(17):2699-708. PubMed ID: 26462137 [Abstract] [Full Text] [Related]
19. Preparation and characterization of gelatin-hydroxyapatite composite microspheres for hard tissue repair. Chao SC, Wang MJ, Pai NS, Yen SK. Mater Sci Eng C Mater Biol Appl; 2015 Dec 01; 57():113-22. PubMed ID: 26354246 [Abstract] [Full Text] [Related]
20. Amyloid-hydroxyapatite bone biomimetic composites. Li C, Born AK, Schweizer T, Zenobi-Wong M, Cerruti M, Mezzenga R. Adv Mater; 2014 May 28; 26(20):3207-12. PubMed ID: 24634054 [Abstract] [Full Text] [Related] Page: [Next] [New Search]