These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


219 related items for PubMed ID: 31798017

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Enhancement of a prosthetic knee with a microprocessor-controlled gait phase switch reduces falls and improves balance confidence and gait speed in community ambulators with unilateral transfemoral amputation.
    Fuenzalida Squella SA, Kannenberg A, Brandão Benetti Â.
    Prosthet Orthot Int; 2018 Apr; 42(2):228-235. PubMed ID: 28691574
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system.
    Abdulhasan ZM, Scally AJ, Buckley JG.
    Clin Biomech (Bristol); 2018 Aug; 57():35-41. PubMed ID: 29908391
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Foot trajectories and loading rates in a transfemoral amputee for six different commercial prosthetic knees: An indication of adaptability.
    Abouhossein A, Awad MI, Maqbool HF, Crisp C, Stewart TD, Messenger N, Richardson RC, Dehghani-Sanij AA, Bradley D.
    Med Eng Phys; 2019 Jun; 68():46-56. PubMed ID: 30979583
    [Abstract] [Full Text] [Related]

  • 11. Pilot study of the microprocessor-controlled prosthetic knee with a novel hydraulic damper.
    Zhang Y, Cao W, Yu H, Meng Q, Chen W.
    Technol Health Care; 2020 Jun; 28(1):93-97. PubMed ID: 31476188
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Effects of walking speed and prosthetic knee control type on external mechanical work in transfemoral prosthesis users.
    Pinhey SR, Murata H, Hisano G, Ichimura D, Hobara H, Major MJ.
    J Biomech; 2022 Mar; 134():110984. PubMed ID: 35182901
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR, Levine JA, Brey RH, Iverson BK, McCrady SK, Padgett DJ, Joyner MJ.
    Gait Posture; 2007 Oct; 26(4):489-93. PubMed ID: 17869114
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Transfemoral amputee intact limb loading and compensatory gait mechanics during down slope ambulation and the effect of prosthetic knee mechanisms.
    Morgenroth DC, Roland M, Pruziner AL, Czerniecki JM.
    Clin Biomech (Bristol); 2018 Jun; 55():65-72. PubMed ID: 29698851
    [Abstract] [Full Text] [Related]

  • 18. Intra-individual biomechanical effects of a non-microprocessor-controlled stance-yielding prosthetic knee during ramp descent in persons with unilateral transfemoral amputation.
    Okita Y, Yamasaki N, Nakamura T, Mita T, Kubo T, Mitsumoto A, Akune T.
    Prosthet Orthot Int; 2019 Feb; 43(1):55-61. PubMed ID: 30051754
    [Abstract] [Full Text] [Related]

  • 19. A clinical comparison of variable-damping and mechanically passive prosthetic knee devices.
    Johansson JL, Sherrill DM, Riley PO, Bonato P, Herr H.
    Am J Phys Med Rehabil; 2005 Aug; 84(8):563-75. PubMed ID: 16034225
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.