These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
158 related items for PubMed ID: 31806810
1. Direct determination of mode-projected electron-phonon coupling in the time domain. Na MX, Mills AK, Boschini F, Michiardi M, Nosarzewski B, Day RP, Razzoli E, Sheyerman A, Schneider M, Levy G, Zhdanovich S, Devereaux TP, Kemper AF, Jones DJ, Damascelli A. Science; 2019 Dec 06; 366(6470):1231-1236. PubMed ID: 31806810 [Abstract] [Full Text] [Related]
2. Self-energy dynamics and the mode-specific phonon threshold effect in Kekulé-ordered graphene. Zhang H, Bao C, Schüler M, Zhou S, Li Q, Luo L, Yao W, Wang Z, Devereaux TP, Zhou S. Natl Sci Rev; 2022 May 06; 9(5):nwab175. PubMed ID: 35663240 [Abstract] [Full Text] [Related]
3. Novel Electron-Phonon Relaxation Pathway in Graphite Revealed by Time-Resolved Raman Scattering and Angle-Resolved Photoemission Spectroscopy. Yang JA, Parham S, Dessau D, Reznik D. Sci Rep; 2017 Jan 19; 7():40876. PubMed ID: 28102368 [Abstract] [Full Text] [Related]
4. Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors. Lanzara A, Bogdanov PV, Zhou XJ, Kellar SA, Feng DL, Lu ED, Yoshida T, Eisaki H, Fujimori A, Kishio K, Shimoyama JI, Noda T, Uchida S, Hussain Z, Shen ZX. Nature; 2001 Aug 02; 412(6846):510-4. PubMed ID: 11484045 [Abstract] [Full Text] [Related]
5. Direct Measurement of Electron-Phonon Coupling with Time-Resolved ARPES. De Giovannini U, Hübener H, Sato SA, Rubio A. Phys Rev Lett; 2020 Sep 25; 125(13):136401. PubMed ID: 33034494 [Abstract] [Full Text] [Related]
6. Ubiquitous coexisting electron-mode couplings in high-temperature cuprate superconductors. Yan H, Bok JM, He J, Zhang W, Gao Q, Luo X, Cai Y, Peng Y, Meng J, Li C, Chen H, Song C, Yin C, Miao T, Chen Y, Gu G, Lin C, Zhang F, Yang F, Zhang S, Peng Q, Liu G, Zhao L, Choi HY, Xu Z, Zhou XJ. Proc Natl Acad Sci U S A; 2023 Oct 24; 120(43):e2219491120. PubMed ID: 37851678 [Abstract] [Full Text] [Related]
7. Enhancement of electron-phonon coupling in Cs-overlayered intercalated bilayer graphene. Kleeman J, Sugawara K, Sato T, Takahashi T. J Phys Condens Matter; 2016 May 25; 28(20):204001. PubMed ID: 27094681 [Abstract] [Full Text] [Related]
8. Angle-resolved photoemission spectra of graphene from first-principles calculations. Park CH, Giustino F, Spataru CD, Cohen ML, Louie SG. Nano Lett; 2009 Dec 25; 9(12):4234-9. PubMed ID: 19856901 [Abstract] [Full Text] [Related]
9. Hot electron relaxation dynamics in semiconductors: assessing the strength of the electron-phonon coupling from the theoretical and experimental viewpoints. Sjakste J, Tanimura K, Barbarino G, Perfetti L, Vast N. J Phys Condens Matter; 2018 Sep 05; 30(35):353001. PubMed ID: 30084390 [Abstract] [Full Text] [Related]
10. Electronic State-Resolved Electron-Phonon Coupling in an Organic Charge Transfer Material from Broadband Quantum Beat Spectroscopy. Rury AS, Sorenson S, Driscoll E, Dawlaty JM. J Phys Chem Lett; 2015 Sep 17; 6(18):3560-4. PubMed ID: 26722724 [Abstract] [Full Text] [Related]
11. Electron Phonon Coupling versus Photoelectron Energy Loss at the Origin of Replica Bands in Photoemission of FeSe on SrTiO_{3}. Li F, Sawatzky GA. Phys Rev Lett; 2018 Jun 08; 120(23):237001. PubMed ID: 29932689 [Abstract] [Full Text] [Related]
12. Separated Electron-Phonon and Phonon-Phonon Scatterings Across Interface in Thin Film LaCoO3 /SrTiO3. Hao W, Gu M, Tian Z, Fu S, Meng M, Zhang H, Guo J, Zhao J. Adv Sci (Weinh); 2024 Jan 08; 11(2):e2305900. PubMed ID: 37984865 [Abstract] [Full Text] [Related]
13. Relaxation of strongly coupled electron and phonon fields after photoemission and high-energy part of ARPES spectra of cuprates. Myasnikova AE, Zhileeva EA, Moseykin DV. J Phys Condens Matter; 2018 Mar 28; 30(12):125601. PubMed ID: 29406313 [Abstract] [Full Text] [Related]
14. An investigation of electron-phonon coupling via phonon dispersion measurements in graphite using angle-resolved photoelectron spectroscopy. Tanaka S, Matsunami M, Kimura S. Sci Rep; 2013 Oct 23; 3():3031. PubMed ID: 24149916 [Abstract] [Full Text] [Related]
15. Non-thermal phonon dynamics and a quenched exciton condensate probed by surface-sensitive electron diffraction. Kurtz F, Dauwe TN, Yalunin SV, Storeck G, Horstmann JG, Böckmann H, Ropers C. Nat Mater; 2024 Jul 23; 23(7):890-897. PubMed ID: 38688990 [Abstract] [Full Text] [Related]
16. Applications of time-domain spectroscopy to electron-phonon coupling dynamics at surfaces. Matsumoto Y. Chem Rec; 2014 Oct 23; 14(5):952-63. PubMed ID: 25139240 [Abstract] [Full Text] [Related]
17. Phonon-induced gaps in graphene and graphite observed by angle-resolved photoemission. Liu Y, Zhang L, Brinkley MK, Bian G, Miller T, Chiang TC. Phys Rev Lett; 2010 Sep 24; 105(13):136804. PubMed ID: 21230798 [Abstract] [Full Text] [Related]
18. Ultrafast Hot Phonon Dynamics in MgB_{2} Driven by Anisotropic Electron-Phonon Coupling. Novko D, Caruso F, Draxl C, Cappelluti E. Phys Rev Lett; 2020 Feb 21; 124(7):077001. PubMed ID: 32142321 [Abstract] [Full Text] [Related]
19. Extracting the temperature of hot carriers in time- and angle-resolved photoemission. Ulstrup S, Johannsen JC, Grioni M, Hofmann P. Rev Sci Instrum; 2014 Jan 21; 85(1):013907. PubMed ID: 24517782 [Abstract] [Full Text] [Related]