These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


849 related items for PubMed ID: 31813834

  • 1. In vitro and in vivo anti-biofilm activity of pyran derivative against Staphylococcus aureus and Pseudomonas aeruginosa.
    Su S, Yin P, Li J, Chen G, Wang Y, Qu D, Li Z, Xue X, Luo X, Li M.
    J Infect Public Health; 2020 May; 13(5):791-799. PubMed ID: 31813834
    [Abstract] [Full Text] [Related]

  • 2. 3-Amino-4-aminoximidofurazan derivatives: small molecules possessing antimicrobial and antibiofilm activity against Staphylococcus aureus and Pseudomonas aeruginosa.
    Das MC, Paul S, Gupta P, Tribedi P, Sarkar S, Manna D, Bhattacharjee S.
    J Appl Microbiol; 2016 Apr; 120(4):842-59. PubMed ID: 26785169
    [Abstract] [Full Text] [Related]

  • 3. Design, synthesis and biological evaluation of 2-substituted 3-hydroxy-6-methyl-4H-pyran-4-one derivatives as Pseudomonas aeruginosa biofilm inhibitors.
    Li YB, Liu J, Huang ZX, Yu JH, Xu XF, Sun PH, Lin J, Chen WM.
    Eur J Med Chem; 2018 Oct 05; 158():753-766. PubMed ID: 30245399
    [Abstract] [Full Text] [Related]

  • 4. Evaluation of chlorogenic acid and carnosol for anti-efflux pump and anti-biofilm activities against extensively drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa.
    Sheikhy M, Karbasizade V, Ghanadian M, Fazeli H.
    Microbiol Spectr; 2024 Sep 03; 12(9):e0393423. PubMed ID: 39046262
    [Abstract] [Full Text] [Related]

  • 5. Antibacterial Properties and Efficacy of LL-37 Fragment GF-17D3 and Scolopendin A2 Peptides Against Resistant Clinical Strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii In Vitro and In Vivo Model Studies.
    Farzi N, Oloomi M, Bahramali G, Siadat SD, Bouzari S.
    Probiotics Antimicrob Proteins; 2024 Jun 03; 16(3):796-814. PubMed ID: 37148452
    [Abstract] [Full Text] [Related]

  • 6. Pseudomonas aeruginosa and Staphylococcus aureus communication in biofilm infections: insights through network and database construction.
    Magalhães AP, Jorge P, Pereira MO.
    Crit Rev Microbiol; 2019 Jun 03; 45(5-6):712-728. PubMed ID: 31835971
    [Abstract] [Full Text] [Related]

  • 7. Analysis of anti-microbial and anti-biofilm activity of hand washes and sanitizers against S. aureus and P. aeruginosa.
    Ahmed K, Ahmed H, Ahmed FA, Ali AA, Akbar J, Rana J, Tariq U, Abidi SH.
    J Pak Med Assoc; 2020 Jan 03; 70(1):100-104. PubMed ID: 31954031
    [Abstract] [Full Text] [Related]

  • 8. Pseudomonas aeruginosa Increases the Sensitivity of Biofilm-Grown Staphylococcus aureus to Membrane-Targeting Antiseptics and Antibiotics.
    Orazi G, Ruoff KL, O'Toole GA.
    mBio; 2019 Jul 30; 10(4):. PubMed ID: 31363032
    [Abstract] [Full Text] [Related]

  • 9. Azithromycin-Ciprofloxacin-Impregnated Urinary Catheters Avert Bacterial Colonization, Biofilm Formation, and Inflammation in a Murine Model of Foreign-Body-Associated Urinary Tract Infections Caused by Pseudomonas aeruginosa.
    Saini H, Vadekeetil A, Chhibber S, Harjai K.
    Antimicrob Agents Chemother; 2017 Mar 30; 61(3):. PubMed ID: 28031194
    [Abstract] [Full Text] [Related]

  • 10. 5-Hydroxyethyl-3-tetradecanoyltetramic acid represents a novel treatment for intravascular catheter infections due to Staphylococcus aureus.
    Zapotoczna M, Murray EJ, Hogan S, O'Gara JP, Chhabra SR, Chan WC, O'Neill E, Williams P.
    J Antimicrob Chemother; 2017 Mar 01; 72(3):744-753. PubMed ID: 27999062
    [Abstract] [Full Text] [Related]

  • 11. Activity of N-acetyl-L-cysteine against biofilm of Staphylococcus aureus and Pseudomonas aeruginosa on orthopedic prosthetic materials.
    Drago L, De Vecchi E, Mattina R, Romanò CL.
    Int J Artif Organs; 2013 Jan 01; 36(1):39-46. PubMed ID: 23280076
    [Abstract] [Full Text] [Related]

  • 12. Mechanistic understanding of Phenyllactic acid mediated inhibition of quorum sensing and biofilm development in Pseudomonas aeruginosa.
    Chatterjee M, D'Morris S, Paul V, Warrier S, Vasudevan AK, Vanuopadath M, Nair SS, Paul-Prasanth B, Mohan CG, Biswas R.
    Appl Microbiol Biotechnol; 2017 Nov 01; 101(22):8223-8236. PubMed ID: 28983655
    [Abstract] [Full Text] [Related]

  • 13. Antibiofilm Activities of Borneol-Citral-Loaded Pickering Emulsions against Pseudomonas aeruginosa and Staphylococcus aureus in Physiologically Relevant Chronic Infection Models.
    Wang W, Bao X, Bové M, Rigole P, Meng X, Su J, Coenye T.
    Microbiol Spectr; 2022 Oct 26; 10(5):e0169622. PubMed ID: 36194139
    [Abstract] [Full Text] [Related]

  • 14. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model.
    Luo J, Dong B, Wang K, Cai S, Liu T, Cheng X, Lei D, Chen Y, Li Y, Kong J, Chen Y.
    PLoS One; 2017 Oct 26; 12(4):e0176883. PubMed ID: 28453568
    [Abstract] [Full Text] [Related]

  • 15. Bacteriophages as potential antibiotic potentiators in cystic fibrosis: A new model to study the combination of antibiotics with a bacteriophage cocktail targeting dual species biofilms of Staphylococcus aureus and Pseudomonas aeruginosa.
    Wang Z, De Soir S, Glorieux A, Merabishvili M, Knoop C, De Vos D, Pirnay JP, Van Bambeke F.
    Int J Antimicrob Agents; 2024 Sep 26; 64(3):107276. PubMed ID: 39009289
    [Abstract] [Full Text] [Related]

  • 16. D-amino acids enhance the activity of antimicrobials against biofilms of clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa.
    Sanchez CJ, Akers KS, Romano DR, Woodbury RL, Hardy SK, Murray CK, Wenke JC.
    Antimicrob Agents Chemother; 2014 Aug 26; 58(8):4353-61. PubMed ID: 24841260
    [Abstract] [Full Text] [Related]

  • 17. PDIA iminosugar influence on subcutaneous Staphylococcus aureus and Pseudomonas aeruginosa infections in mice.
    Kozień Ł, Policht A, Heczko P, Arent Z, Bracha U, Pardyak L, Pietsch-Fulbiszewska A, Gallienne E, Piwowar P, Okoń K, Tomusiak-Plebanek A, Strus M.
    Front Cell Infect Microbiol; 2024 Aug 26; 14():1395577. PubMed ID: 39145303
    [Abstract] [Full Text] [Related]

  • 18. Induction of amylase and protease as antibiofilm agents by starch, casein, and yeast extract in Arthrobacter sp. CW01.
    Solihin J, Waturangi DE, Purwadaria T.
    BMC Microbiol; 2021 Aug 23; 21(1):232. PubMed ID: 34425755
    [Abstract] [Full Text] [Related]

  • 19. In vitro inhibitory activity of N-acetylcysteine on tympanostomy tube biofilms from methicillin-resistant Staphylococcus aureus and quinolone-resistant Pseudomonas aeruginosa.
    Jun Y, Youn CK, Jo ER, Cho SI.
    Int J Pediatr Otorhinolaryngol; 2019 Nov 23; 126():109622. PubMed ID: 31404783
    [Abstract] [Full Text] [Related]

  • 20. Subinhibitory concentrations of phenyl lactic acid interfere with the expression of virulence factors in Staphylococcus aureus and Pseudomonas aeruginosa clinical strains.
    Chifiriuc MC, Diţu LM, Banu O, Bleotu C, Drăcea O, Bucur M, Larion C, Israil AM, Lazăr V.
    Roum Arch Microbiol Immunol; 2009 Nov 23; 68(1):27-33. PubMed ID: 19507624
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 43.