These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


102 related items for PubMed ID: 31818658

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Kinetics and Catabolic Pathways of the Insecticide Chlorpyrifos, Annotation of the Degradation Genes, and Characterization of Enzymes TcpA and Fre in Cupriavidus nantongensis X1T.
    Fang L, Shi T, Chen Y, Wu X, Zhang C, Tang X, Li QX, Hua R.
    J Agric Food Chem; 2019 Feb 27; 67(8):2245-2254. PubMed ID: 30721044
    [Abstract] [Full Text] [Related]

  • 3. Functions of flavin reductase and quinone reductase in 2,4,6-trichlorophenol degradation by Cupriavidus necator JMP134.
    Belchik SM, Xun L.
    J Bacteriol; 2008 Mar 27; 190(5):1615-9. PubMed ID: 18165297
    [Abstract] [Full Text] [Related]

  • 4. Structural and catalytic differences between two FADH(2)-dependent monooxygenases: 2,4,5-TCP 4-monooxygenase (TftD) from Burkholderia cepacia AC1100 and 2,4,6-TCP 4-monooxygenase (TcpA) from Cupriavidus necator JMP134.
    Hayes RP, Webb BN, Subramanian AK, Nissen M, Popchock A, Xun L, Kang C.
    Int J Mol Sci; 2012 Mar 27; 13(8):9769-9784. PubMed ID: 22949829
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Rapid Biodegradation of the Organophosphorus Insecticide Chlorpyrifos by Cupriavidus nantongensis X1T.
    Shi T, Fang L, Qin H, Chen Y, Wu X, Hua R.
    Int J Environ Res Public Health; 2019 Nov 20; 16(23):. PubMed ID: 31756950
    [Abstract] [Full Text] [Related]

  • 7. Enhanced biodegradation of organophosphorus insecticides in industrial wastewater via immobilized Cupriavidus nantongensis X1T.
    Fang L, Xu Y, Xu L, Shi T, Ma X, Wu X, Li QX, Hua R.
    Sci Total Environ; 2021 Feb 10; 755(Pt 1):142505. PubMed ID: 33038839
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Changes in TcpA gene frequency explain 2,4,6-trichlorophenol degradation in mesocosms.
    Sinkkonen A, Ollila S, Romantschuk M.
    J Environ Sci Health B; 2014 Feb 10; 49(10):756-9. PubMed ID: 25065827
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Efficient biodegradation characteristics and detoxification pathway of organophosphorus insecticide profenofos via Cupriavidus nantongensis X1T and enzyme OpdB.
    Fang L, Zhou Y, Chen T, Geng Y, Li Z, Zha W, Shi T, Hua R.
    Sci Total Environ; 2023 Mar 01; 862():160782. PubMed ID: 36513234
    [Abstract] [Full Text] [Related]

  • 12. Enantioselective degradation of the organophosphorus insecticide isocarbophos in Cupriavidus nantongensis X1T: Characteristics, enantioselective regulation, degradation pathways, and toxicity assessment.
    Fang L, Xu L, Zhang N, Shi Q, Shi T, Ma X, Wu X, Li QX, Hua R.
    J Hazard Mater; 2021 Sep 05; 417():126024. PubMed ID: 33992014
    [Abstract] [Full Text] [Related]

  • 13. Oxidative biodegradation of 4-chlorophenol by using recombinant monooxygenase cloned and overexpressed from Arthrobacter chlorophenolicus A6.
    Kang C, Yang JW, Cho W, Kwak S, Park S, Lim Y, Choe JW, Kim HS.
    Bioresour Technol; 2017 Sep 05; 240():123-129. PubMed ID: 28343861
    [Abstract] [Full Text] [Related]

  • 14. 2,4-Dichlorophenol hydroxylase for chlorophenol removal: Substrate specificity and catalytic activity.
    Ren H, Li Q, Zhan Y, Fang X, Yu D.
    Enzyme Microb Technol; 2016 Jan 05; 82():74-81. PubMed ID: 26672451
    [Abstract] [Full Text] [Related]

  • 15. Identification of two combined genes responsible for dechlorination of 3,5,6-trichloro-2-pyridinol (TCP) in Cupriavidus pauculus P2.
    Cao L, Xu J, Wu G, Li M, Jiang J, He J, Li S, Hong Q.
    J Hazard Mater; 2013 Sep 15; 260():700-6. PubMed ID: 23850940
    [Abstract] [Full Text] [Related]

  • 16. Rapid Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by Cupriavidus gilardii T-1.
    Wu X, Wang W, Liu J, Pan D, Tu X, Lv P, Wang Y, Cao H, Wang Y, Hua R.
    J Agric Food Chem; 2017 May 10; 65(18):3711-3720. PubMed ID: 28434228
    [Abstract] [Full Text] [Related]

  • 17. Enantioselective Uptake Determines Degradation Selectivity of Chiral Profenofos in Cupriavidus nantongensis X1T.
    Fang L, Shi Q, Xu L, Shi T, Wu X, Li QX, Hua R.
    J Agric Food Chem; 2020 Jun 17; 68(24):6493-6501. PubMed ID: 32459959
    [Abstract] [Full Text] [Related]

  • 18. Resistance properties and adaptation mechanism of cadmium in an enriched strain, Cupriavidus nantongensis X1T.
    Fang L, Zhu H, Geng Y, Zhang G, Zhang H, Shi T, Wu X, Li QX, Hua R.
    J Hazard Mater; 2022 Jul 15; 434():128935. PubMed ID: 35461001
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Microbial degradation kinetics and molecular mechanism of 2,6-dichloro-4-nitrophenol by a Cupriavidus strain.
    Min J, Xu L, Fang S, Chen W, Hu X.
    Environ Pollut; 2020 Mar 15; 258():113703. PubMed ID: 31818627
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.