These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
337 related items for PubMed ID: 31822774
1. Short-term Reproducibility of Pulmonary Nodule and Mass Detection in Chest Radiographs: Comparison among Radiologists and Four Different Computer-Aided Detections with Convolutional Neural Net. Kim YG, Cho Y, Wu CJ, Park S, Jung KH, Seo JB, Lee HJ, Hwang HJ, Lee SM, Kim N. Sci Rep; 2019 Dec 10; 9(1):18738. PubMed ID: 31822774 [Abstract] [Full Text] [Related]
2. Reproducibility of abnormality detection on chest radiographs using convolutional neural network in paired radiographs obtained within a short-term interval. Cho Y, Kim YG, Lee SM, Seo JB, Kim N. Sci Rep; 2020 Oct 15; 10(1):17417. PubMed ID: 33060837 [Abstract] [Full Text] [Related]
3. Optimal matrix size of chest radiographs for computer-aided detection on lung nodule or mass with deep learning. Kim YG, Lee SM, Lee KH, Jang R, Seo JB, Kim N. Eur Radiol; 2020 Sep 15; 30(9):4943-4951. PubMed ID: 32350657 [Abstract] [Full Text] [Related]
4. Evaluation of computer-aided diagnosis (CAD) software for the detection of lung nodules on multidetector row computed tomography (MDCT): JAFROC study for the improvement in radiologists' diagnostic accuracy. Hirose T, Nitta N, Shiraishi J, Nagatani Y, Takahashi M, Murata K. Acad Radiol; 2008 Dec 15; 15(12):1505-12. PubMed ID: 19000867 [Abstract] [Full Text] [Related]
5. Deep Convolutional Neural Network-based Software Improves Radiologist Detection of Malignant Lung Nodules on Chest Radiographs. Sim Y, Chung MJ, Kotter E, Yune S, Kim M, Do S, Han K, Kim H, Yang S, Lee DJ, Choi BW. Radiology; 2020 Jan 15; 294(1):199-209. PubMed ID: 31714194 [Abstract] [Full Text] [Related]
6. Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs. Nam JG, Park S, Hwang EJ, Lee JH, Jin KN, Lim KY, Vu TH, Sohn JH, Hwang S, Goo JM, Park CM. Radiology; 2019 Jan 15; 290(1):218-228. PubMed ID: 30251934 [Abstract] [Full Text] [Related]
7. Identifying pulmonary nodules or masses on chest radiography using deep learning: external validation and strategies to improve clinical practice. Liang CH, Liu YC, Wu MT, Garcia-Castro F, Alberich-Bayarri A, Wu FZ. Clin Radiol; 2020 Jan 15; 75(1):38-45. PubMed ID: 31521323 [Abstract] [Full Text] [Related]
8. Value of a Computer-aided Detection System Based on Chest Tomosynthesis Imaging for the Detection of Pulmonary Nodules. Yamada Y, Shiomi E, Hashimoto M, Abe T, Matsusako M, Saida Y, Ogawa K. Radiology; 2018 Apr 15; 287(1):333-339. PubMed ID: 29206596 [Abstract] [Full Text] [Related]
10. Computer-aided detection improves detection of pulmonary nodules in chest radiographs beyond the support by bone-suppressed images. Schalekamp S, van Ginneken B, Koedam E, Snoeren MM, Tiehuis AM, Wittenberg R, Karssemeijer N, Schaefer-Prokop CM. Radiology; 2014 Jul 15; 272(1):252-61. PubMed ID: 24635675 [Abstract] [Full Text] [Related]
11. Effect of CAD on radiologists' detection of lung nodules on thoracic CT scans: analysis of an observer performance study by nodule size. Sahiner B, Chan HP, Hadjiiski LM, Cascade PN, Kazerooni EA, Chughtai AR, Poopat C, Song T, Frank L, Stojanovska J, Attili A. Acad Radiol; 2009 Dec 15; 16(12):1518-30. PubMed ID: 19896069 [Abstract] [Full Text] [Related]
15. Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database. Jacobs C, van Rikxoort EM, Murphy K, Prokop M, Schaefer-Prokop CM, van Ginneken B. Eur Radiol; 2016 Jul 15; 26(7):2139-47. PubMed ID: 26443601 [Abstract] [Full Text] [Related]
16. Efficiency of a computer-aided diagnosis (CAD) system with deep learning in detection of pulmonary nodules on 1-mm-thick images of computed tomography. Kozuka T, Matsukubo Y, Kadoba T, Oda T, Suzuki A, Hyodo T, Im S, Kaida H, Yagyu Y, Tsurusaki M, Matsuki M, Ishii K. Jpn J Radiol; 2020 Nov 15; 38(11):1052-1061. PubMed ID: 32592003 [Abstract] [Full Text] [Related]