These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Entrainment of Network Activity by Closed-Loop Microstimulation in Healthy Ambulatory Rats. Averna A, Hayley P, Murphy MD, Barban F, Nguyen J, Buccelli S, Nudo RJ, Chiappalone M, Guggenmos DJ. Cereb Cortex; 2021 Oct 01; 31(11):5042-5055. PubMed ID: 34165137 [Abstract] [Full Text] [Related]
3. Repetitive microstimulation in rat primary somatosensory cortex (SI) strengthens the connection between homotopic sites in the opposite SI and leads to expression of previously ineffective input from the ipsilateral forelimb. DeCosta-Fortune TM, Ramshur JT, Li CX, de Jongh Curry A, Pellicer-Morata V, Wang L, Waters RS. Brain Res; 2020 Apr 01; 1732():146694. PubMed ID: 32017899 [Abstract] [Full Text] [Related]
4. The impact of closed-loop intracortical stimulation on neural activity in brain-injured, anesthetized animals. Carè M, Averna A, Barban F, Semprini M, De Michieli L, Nudo RJ, Guggenmos DJ, Chiappalone M. Bioelectron Med; 2022 Feb 28; 8(1):4. PubMed ID: 35220964 [Abstract] [Full Text] [Related]
5. Large-scale changes in cortical dynamics triggered by repetitive somatosensory electrical stimulation. Hishinuma AK, Gulati T, Burish MJ, Ganguly K. J Neuroeng Rehabil; 2019 May 24; 16(1):59. PubMed ID: 31126339 [Abstract] [Full Text] [Related]
6. Structure of the excitatory receptive fields of infragranular forelimb neurons in the rat primary somatosensory cortex responding to touch. Tutunculer B, Foffani G, Himes BT, Moxon KA. Cereb Cortex; 2006 Jun 24; 16(6):791-810. PubMed ID: 16120794 [Abstract] [Full Text] [Related]
7. Interhemispheric modulations of motor outputs by the rostral and caudal forelimb areas in rats. Touvykine B, Elgbeili G, Quessy S, Dancause N. J Neurophysiol; 2020 Apr 01; 123(4):1355-1368. PubMed ID: 32130080 [Abstract] [Full Text] [Related]
8. Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity application to brain-machine interfaces and neurorehabilitation. Rebesco JM, Miller LE. Prog Brain Res; 2011 Apr 01; 192():83-102. PubMed ID: 21763520 [Abstract] [Full Text] [Related]
9. Reorganization of motor cortex after controlled cortical impact in rats and implications for functional recovery. Nishibe M, Barbay S, Guggenmos D, Nudo RJ. J Neurotrauma; 2010 Dec 01; 27(12):2221-32. PubMed ID: 20873958 [Abstract] [Full Text] [Related]
10. Distinct patterns of activity in individual cortical neurons and local networks in primary somatosensory cortex of mice evoked by square-wave mechanical limb stimulation. Bandet MV, Dong B, Winship IR. PLoS One; 2021 Dec 01; 16(4):e0236684. PubMed ID: 33914738 [Abstract] [Full Text] [Related]
11. Mapping the effects of SI cortex stimulation on somatosensory relay neurons in the rat thalamus: direct responses and afferent modulation. Shin HC, Chapin JK. Somatosens Mot Res; 1990 Dec 01; 7(4):421-34. PubMed ID: 1963252 [Abstract] [Full Text] [Related]
12. LFP Analysis of Brain Injured Anesthetized Animals Undergoing Closed-Loop Intracortical Stimulation. Averna A, Barban F, Care M, Murphy MD, Iandolo R, De Michieli L, Nudo RJ, Guggenmos DJ, Chiappalone M. IEEE Trans Neural Syst Rehabil Eng; 2022 Dec 01; 30():1441-1451. PubMed ID: 35604961 [Abstract] [Full Text] [Related]
13. Prenatal alcohol exposure reduces the size of the forelimb representation in motor cortex in rat: an intracortical microstimulation (ICMS) mapping study. Xie N, Yang Q, Chappell TD, Li CX, Waters RS. Alcohol; 2010 Mar 01; 44(2):185-94. PubMed ID: 20083368 [Abstract] [Full Text] [Related]
14. Effects of locus coeruleus stimulation on the responses of SI neurons of the rat to controlled natural and electrical stimulation of the skin. Snow PJ, Andre P, Pompeiano O. Arch Ital Biol; 1999 Feb 01; 137(1):1-28. PubMed ID: 9934431 [Abstract] [Full Text] [Related]
15. Cortical plasticity induced by spike-triggered microstimulation in primate somatosensory cortex. Song W, Kerr CC, Lytton WW, Francis JT. PLoS One; 2013 Feb 01; 8(3):e57453. PubMed ID: 23472086 [Abstract] [Full Text] [Related]
16. Suppression of activity in the forelimb motor cortex temporarily enlarges forelimb representation in the homotopic cortex in adult rats. Maggiolini E, Viaro R, Franchi G. Eur J Neurosci; 2008 May 01; 27(10):2733-46. PubMed ID: 18547253 [Abstract] [Full Text] [Related]
17. Activity dependent stimulation increases synaptic efficacy in spared pathways in an anesthetized rat model of spinal cord contusion injury. Borrell JA, Krizsan-Agbas D, Nudo RJ, Frost SB. Restor Neurol Neurosci; 2022 May 01; 40(1):17-33. PubMed ID: 35213336 [Abstract] [Full Text] [Related]
18. Optical imaging of cortical networks via intracortical microstimulation. Brock AA, Friedman RM, Fan RH, Roe AW. J Neurophysiol; 2013 Dec 01; 110(11):2670-8. PubMed ID: 24027103 [Abstract] [Full Text] [Related]
19. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways. Kunori N, Takashima I. Eur J Neurosci; 2016 Dec 01; 44(11):2925-2934. PubMed ID: 27717064 [Abstract] [Full Text] [Related]
20. Intact intracortical microstimulation (ICMS) representations of rostral and caudal forelimb areas in rats with quinolinic acid lesions of the medial or lateral caudate-putamen in an animal model of Huntington's disease. Karl JM, Sacrey LA, McDonald RJ, Whishaw IQ. Brain Res Bull; 2008 Sep 05; 77(1):42-8. PubMed ID: 18639744 [Abstract] [Full Text] [Related] Page: [Next] [New Search]