These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
215 related items for PubMed ID: 31838081
1. Mitochondrial carnitine palmitoyltransferase 2 is involved in Nε-(carboxymethyl)-lysine-mediated diabetic nephropathy. Lee J, Hyon JY, Min JY, Huh YH, Kim HJ, Lee H, Yun SH, Choi CW, Jeong Ha S, Park J, Chung YH, Jeong HG, Ha SK, Jung SK, Kim Y, Han EH. Pharmacol Res; 2020 Feb; 152():104600. PubMed ID: 31838081 [Abstract] [Full Text] [Related]
2. Advanced glycation end products (AGEs) increase renal lipid accumulation: a pathogenic factor of diabetic nephropathy (DN). Yuan Y, Sun H, Sun Z. Lipids Health Dis; 2017 Jun 28; 16(1):126. PubMed ID: 28659153 [Abstract] [Full Text] [Related]
4. Nε-(carboxymethyl) lysine-induced mitochondrial fission and mitophagy cause decreased insulin secretion from β-cells. Lo MC, Chen MH, Lee WS, Lu CI, Chang CR, Kao SH, Lee HM. Am J Physiol Endocrinol Metab; 2015 Nov 15; 309(10):E829-39. PubMed ID: 26394662 [Abstract] [Full Text] [Related]
5. Immunohistochemical colocalization of glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions. Implication for glycoxidative stress in the pathogenesis of diabetic nephropathy. Horie K, Miyata T, Maeda K, Miyata S, Sugiyama S, Sakai H, van Ypersole de Strihou C, Monnier VM, Witztum JL, Kurokawa K. J Clin Invest; 1997 Dec 15; 100(12):2995-3004. PubMed ID: 9399945 [Abstract] [Full Text] [Related]
8. The Attenuation of Diabetic Nephropathy by Annexin A1 via Regulation of Lipid Metabolism Through the AMPK/PPARα/CPT1b Pathway. Wu L, Liu C, Chang DY, Zhan R, Zhao M, Man Lam S, Shui G, Zhao MH, Zheng L, Chen M. Diabetes; 2021 Oct 15; 70(10):2192-2203. PubMed ID: 34103347 [Abstract] [Full Text] [Related]
9. Advanced Oxidation Protein Products Aggravate Tubulointerstitial Fibrosis Through Protein Kinase C-Dependent Mitochondrial Injury in Early Diabetic Nephropathy. Li X, Xu L, Hou X, Geng J, Tian J, Liu X, Bai X. Antioxid Redox Signal; 2019 Mar 20; 30(9):1162-1185. PubMed ID: 29482336 [Abstract] [Full Text] [Related]
10. Sirt5 improves cardiomyocytes fatty acid metabolism and ameliorates cardiac lipotoxicity in diabetic cardiomyopathy via CPT2 de-succinylation. Wu M, Tan J, Cao Z, Cai Y, Huang Z, Chen Z, He W, Liu X, Jiang Y, Gao Q, Deng B, Wang J, Yuan W, Zhang H, Chen Y. Redox Biol; 2024 Jul 20; 73():103184. PubMed ID: 38718533 [Abstract] [Full Text] [Related]
13. Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. Tanji N, Markowitz GS, Fu C, Kislinger T, Taguchi A, Pischetsrieder M, Stern D, Schmidt AM, D'Agati VD. J Am Soc Nephrol; 2000 Sep 20; 11(9):1656-1666. PubMed ID: 10966490 [Abstract] [Full Text] [Related]
15. α2-antiplasmin positively regulates endothelial-to-mesenchymal transition and fibrosis progression in diabetic nephropathy. Kanno Y, Hirota M, Matsuo O, Ozaki KI. Mol Biol Rep; 2022 Jan 20; 49(1):205-215. PubMed ID: 34709571 [Abstract] [Full Text] [Related]
18. Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the NF-κB/TNF-α pathway. Yang H, Xie T, Li D, Du X, Wang T, Li C, Song X, Xu L, Yi F, Liang X, Gao L, Yang X, Ma C. Mol Metab; 2019 May 20; 23():24-36. PubMed ID: 30862474 [Abstract] [Full Text] [Related]