These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
279 related items for PubMed ID: 31838593
1. A fluorometric aptamer-based assay for ochratoxin A by using exonuclease III-assisted recycling amplification. Liu M, Li X, Li B, Du J, Yang Z. Mikrochim Acta; 2019 Dec 14; 187(1):46. PubMed ID: 31838593 [Abstract] [Full Text] [Related]
2. Fluorometric aptamer assay for ochratoxin A based on the use of single walled carbon nanohorns and exonuclease III-aided amplification. Wu H, Liu R, Kang X, Liang C, Lv L, Guo Z. Mikrochim Acta; 2017 Dec 06; 185(1):27. PubMed ID: 29594393 [Abstract] [Full Text] [Related]
3. Fluorometric aptamer-based determination of ochratoxin A based on the use of graphene oxide and RNase H-aided amplification. Ma C, Wu K, Zhao H, Liu H, Wang K, Xia K. Mikrochim Acta; 2018 Jun 30; 185(7):347. PubMed ID: 29961128 [Abstract] [Full Text] [Related]
6. Exonuclease I-assisted fluorescent method for ochratoxin A detection using iron-doped porous carbon, nitrogen-doped graphene quantum dots, and double magnetic separation. Wang C, Tan R, Li J, Zhang Z. Anal Bioanal Chem; 2019 Apr 30; 411(11):2405-2414. PubMed ID: 30828760 [Abstract] [Full Text] [Related]
11. Amplified Fluorescent Aptasensor for Ochratoxin A Assay Based on Graphene Oxide and RecJf Exonuclease. Zhao H, Xiong D, Yan Y, Ma C. Toxins (Basel); 2020 Oct 23; 12(11):. PubMed ID: 33113906 [Abstract] [Full Text] [Related]
12. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction. Sun AL, Zhang YF, Sun GP, Wang XN, Tang D. Biosens Bioelectron; 2017 Mar 15; 89(Pt 1):659-665. PubMed ID: 26707001 [Abstract] [Full Text] [Related]
13. Exonuclease III-assisted fluorometric aptasensor for the carcinoembryonic antigen using graphene oxide and 2-aminopurine. Chen M, Ma C, Zhao H, Yan Y. Mikrochim Acta; 2019 Jul 03; 186(8):500. PubMed ID: 31270630 [Abstract] [Full Text] [Related]
14. Core-satellite assemblies and exonuclease assisted double amplification strategy for ultrasensitive SERS detection of biotoxin. Huang D, Chen J, Ding L, Guo L, Kannan P, Luo F, Qiu B, Lin Z. Anal Chim Acta; 2020 May 08; 1110():56-63. PubMed ID: 32278400 [Abstract] [Full Text] [Related]
17. Fluorometric determination of HIV DNA using molybdenum disulfide nanosheets and exonuclease III-assisted amplification. Wang L, Dong L, Liu G, Shen X, Wang J, Zhu C, Ding M, Wen Y. Mikrochim Acta; 2019 Apr 15; 186(5):286. PubMed ID: 30989443 [Abstract] [Full Text] [Related]
18. Construction of a fluorescence biosensor for ochratoxin A based on magnetic beads and exonuclease III-assisted DNA cycling signal amplification. Liu M, Liu S, Ma Y, Li B. Anal Methods; 2022 Feb 17; 14(7):734-740. PubMed ID: 35107449 [Abstract] [Full Text] [Related]
19. Fluorometric determination of mercury(II) via a graphene oxide-based assay using exonuclease III-assisted signal amplification and thymidine-Hg(II)-thymidine interaction. Ning Y, Hu J, Wei K, He G, Wu T, Lu F. Mikrochim Acta; 2019 Mar 05; 186(4):216. PubMed ID: 30838468 [Abstract] [Full Text] [Related]
20. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A. Wei Y, Zhang J, Wang X, Duan Y. Biosens Bioelectron; 2015 Mar 15; 65():16-22. PubMed ID: 25461133 [Abstract] [Full Text] [Related] Page: [Next] [New Search]