These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


308 related items for PubMed ID: 3184549

  • 1. High molecular weight aggregate from cataractous and normal human lenses: characterization by antisera to lens crystallins.
    Kodama T, Wong R, Takemoto L.
    Jpn J Ophthalmol; 1988; 32(2):159-65. PubMed ID: 3184549
    [Abstract] [Full Text] [Related]

  • 2. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K, Chaves JM, Srivastava OP, Kirk M.
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [Abstract] [Full Text] [Related]

  • 3. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS, Ng AS, Uchida K, Glomb MA, Nagaraj RH.
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [Abstract] [Full Text] [Related]

  • 4. Antisera to alpha crystallin as probes to study changes in lens proteins during human cataractogenesis.
    Takemoto L, Emmons T.
    Invest Ophthalmol Vis Sci; 1990 Jul; 31(7):1348-52. PubMed ID: 2365565
    [Abstract] [Full Text] [Related]

  • 5. Comparison of microdissected sections from the human cataractous lens by antisera to synthetic peptides.
    Takemoto L, Kodama T, Wolfe J, Chylack L.
    Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1210-3. PubMed ID: 3596997
    [Abstract] [Full Text] [Related]

  • 6. Characterization of water-insoluble proteins in normal and cataractous human lens.
    Kamei A.
    Jpn J Ophthalmol; 1990 Jul; 34(2):216-24. PubMed ID: 2214364
    [Abstract] [Full Text] [Related]

  • 7. Quantitation of membrane-associated crystallins from aging and cataractous human lenses.
    Takehana M, Takemoto L.
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):780-4. PubMed ID: 3570688
    [Abstract] [Full Text] [Related]

  • 8. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V, Srivastava OP, Kirk M.
    Mol Vis; 2007 Sep 14; 13():1680-94. PubMed ID: 17893670
    [Abstract] [Full Text] [Related]

  • 9. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V, McCall S, Huynh S, Srivastava K, Srivastava OP.
    Mol Vis; 2004 Jul 19; 10():476-89. PubMed ID: 15303090
    [Abstract] [Full Text] [Related]

  • 10. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P, Saxena AK, Cui XL, Obrenovich M, Gudipaty K, Monnier VM.
    Invest Ophthalmol Vis Sci; 2000 May 19; 41(6):1473-81. PubMed ID: 10798665
    [Abstract] [Full Text] [Related]

  • 11. Non-tryptophan fluorescence of crystallins from normal and cataractous human lenses.
    Bessems GJ, Keizer E, Wollensak J, Hoenders HJ.
    Invest Ophthalmol Vis Sci; 1987 Jul 19; 28(7):1157-63. PubMed ID: 3596993
    [Abstract] [Full Text] [Related]

  • 12. Quantitation of high molecular weight protein aggregates in opaque and transparent parts from the same human cataractous lens.
    Kodama T, Wolfe J, Chylack L, Smith J, Takemoto L.
    Jpn J Ophthalmol; 1989 Jul 19; 33(1):114-9. PubMed ID: 2733253
    [Abstract] [Full Text] [Related]

  • 13. Protein alterations in age-related cataract associated with a persistent hyaloid vascular system in senescence-accelerated mouse (SAM).
    Ashida Y, Takeda T, Hosokawa M.
    Exp Eye Res; 1994 Oct 19; 59(4):467-73. PubMed ID: 7859822
    [Abstract] [Full Text] [Related]

  • 14. Analysis of low molecular weight fractions in human senile cataractous lens.
    Takehana M, Takemoto LJ, Iwata S.
    Jpn J Ophthalmol; 1983 Oct 19; 27(4):585-91. PubMed ID: 6668751
    [Abstract] [Full Text] [Related]

  • 15. Characterization of disulfide-linked crystallins associated with human cataractous lens membranes.
    Kodama T, Takemoto L.
    Invest Ophthalmol Vis Sci; 1988 Jan 19; 29(1):145-9. PubMed ID: 3335427
    [Abstract] [Full Text] [Related]

  • 16. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses.
    Srivastava OP, Srivastava K.
    Mol Vis; 2003 Apr 16; 9():110-8. PubMed ID: 12707643
    [Abstract] [Full Text] [Related]

  • 17. [Changes in water-soluble, urea-soluble and membrane intrinsic proteins in human senile cataract].
    Zhao HR, Hu SQ, Ren XH.
    Zhonghua Yan Ke Za Zhi; 1994 May 16; 30(3):186-8. PubMed ID: 7842996
    [Abstract] [Full Text] [Related]

  • 18. Increased deamidation of asparagine during human senile cataractogenesis.
    Takemoto L, Boyle D.
    Mol Vis; 2000 Sep 05; 6():164-8. PubMed ID: 10976112
    [Abstract] [Full Text] [Related]

  • 19. Covalent change in alpha crystallin in opaque and transparent sections from the same human cataractous lens.
    Kodama T, Kodama T, Horwitz J, Takemoto L.
    Jpn J Ophthalmol; 1990 Sep 05; 34(1):44-52. PubMed ID: 2362373
    [Abstract] [Full Text] [Related]

  • 20. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase.
    Molnár GA, Nemes V, Biró Z, Ludány A, Wagner Z, Wittmann I.
    Free Radic Res; 2005 Dec 05; 39(12):1359-66. PubMed ID: 16298866
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.