These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


175 related items for PubMed ID: 31846726

  • 1. Particle engineered mannitol for carrier-based inhalation - A serious alternative?
    Hertel N, Birk G, Scherließ R.
    Int J Pharm; 2020 Mar 15; 577():118901. PubMed ID: 31846726
    [Abstract] [Full Text] [Related]

  • 2. Performance tuning of particle engineered mannitol in dry powder inhalation formulations.
    Hertel N, Birk G, Scherließ R.
    Int J Pharm; 2020 Aug 30; 586():119592. PubMed ID: 32622814
    [Abstract] [Full Text] [Related]

  • 3. Dry powder inhaler performance of spray dried mannitol with tailored surface morphologies as carrier and salbutamol sulphate.
    Mönckedieck M, Kamplade J, Fakner P, Urbanetz NA, Walzel P, Steckel H, Scherließ R.
    Int J Pharm; 2017 May 30; 524(1-2):351-363. PubMed ID: 28347847
    [Abstract] [Full Text] [Related]

  • 4. Carrier-based dry powder inhalation: Impact of carrier modification on capsule filling processability and in vitro aerodynamic performance.
    Faulhammer E, Wahl V, Zellnitz S, Khinast JG, Paudel A.
    Int J Pharm; 2015 Aug 01; 491(1-2):231-42. PubMed ID: 26136200
    [Abstract] [Full Text] [Related]

  • 5. Tribo-Charging Behaviour of Inhalable Mannitol Blends with Salbutamol Sulphate.
    Zellnitz S, Pinto JT, Brunsteiner M, Schroettner H, Khinast J, Paudel A.
    Pharm Res; 2019 Apr 09; 36(6):80. PubMed ID: 30968221
    [Abstract] [Full Text] [Related]

  • 6. Spray-Congealing and Wet-Sieving as Alternative Processes for Engineering of Inhalation Carrier Particles: Comparison of Surface Properties, Blending and In Vitro Performance.
    Pinto JT, Zellnitz S, Guidi T, Schiaretti F, Schroettner H, Paudel A.
    Pharm Res; 2021 Jun 09; 38(6):1107-1123. PubMed ID: 34114162
    [Abstract] [Full Text] [Related]

  • 7. Effect of carrier particle shape on dry powder inhaler performance.
    Kaialy W, Alhalaweh A, Velaga SP, Nokhodchi A.
    Int J Pharm; 2011 Dec 12; 421(1):12-23. PubMed ID: 21945739
    [Abstract] [Full Text] [Related]

  • 8. Co-spraying of carriers (mannitol-lactose) as a method to improve aerosolization performance of salbutamol sulfate dry powder inhaler.
    Ferdynand MS, Nokhodchi A.
    Drug Deliv Transl Res; 2020 Oct 12; 10(5):1418-1427. PubMed ID: 31933129
    [Abstract] [Full Text] [Related]

  • 9. Evaluation of SCF-engineered particle-based lactose blends in passive dry powder inhalers.
    Schiavone H, Palakodaty S, Clark A, York P, Tzannis ST.
    Int J Pharm; 2004 Aug 20; 281(1-2):55-66. PubMed ID: 15288343
    [Abstract] [Full Text] [Related]

  • 10. Humidity-induced changes of the aerodynamic properties of dry powder aerosol formulations containing different carriers.
    Zeng XM, MacRitchie HB, Marriott C, Martin GP.
    Int J Pharm; 2007 Mar 21; 333(1-2):45-55. PubMed ID: 17064863
    [Abstract] [Full Text] [Related]

  • 11. Evaluation of Granulated Lactose as a Carrier for Dry Powder Inhaler Formulations 2: Effect of Drugs and Drug Loading.
    Du P, Du J, Smyth HDC.
    J Pharm Sci; 2017 Jan 21; 106(1):366-376. PubMed ID: 27939234
    [Abstract] [Full Text] [Related]

  • 12. Assessment of Dry Powder Inhaler Carrier Targeted Design: A Comparative Case Study of Diverse Anomeric Compositions and Physical Properties of Lactose.
    Pinto JT, Zellnitz S, Guidi T, Roblegg E, Paudel A.
    Mol Pharm; 2018 Jul 02; 15(7):2827-2839. PubMed ID: 29856921
    [Abstract] [Full Text] [Related]

  • 13. Engineered mannitol ternary additives improve dispersion of lactose-salbutamol sulphate dry powder inhalations.
    Kaialy W, Nokhodchi A.
    AAPS J; 2013 Jul 02; 15(3):728-43. PubMed ID: 23591748
    [Abstract] [Full Text] [Related]

  • 14. Influence of size and surface roughness of large lactose carrier particles in dry powder inhaler formulations.
    Donovan MJ, Smyth HD.
    Int J Pharm; 2010 Dec 15; 402(1-2):1-9. PubMed ID: 20816928
    [Abstract] [Full Text] [Related]

  • 15. Powder flow analysis: A simple method to indicate the ideal amount of lactose fines in dry powder inhaler formulations.
    Hertel M, Schwarz E, Kobler M, Hauptstein S, Steckel H, Scherließ R.
    Int J Pharm; 2018 Jan 15; 535(1-2):59-67. PubMed ID: 29100914
    [Abstract] [Full Text] [Related]

  • 16. Dry powders for oral inhalation free of lactose carrier particles.
    Healy AM, Amaro MI, Paluch KJ, Tajber L.
    Adv Drug Deliv Rev; 2014 Aug 15; 75():32-52. PubMed ID: 24735676
    [Abstract] [Full Text] [Related]

  • 17. Defining the critical material attributes of lactose monohydrate in carrier based dry powder inhaler formulations using artificial neural networks.
    Kinnunen H, Hebbink G, Peters H, Shur J, Price R.
    AAPS PharmSciTech; 2014 Aug 15; 15(4):1009-20. PubMed ID: 24831088
    [Abstract] [Full Text] [Related]

  • 18. Dry powder inhaler device influence on carrier particle performance.
    Donovan MJ, Kim SH, Raman V, Smyth HD.
    J Pharm Sci; 2012 Mar 15; 101(3):1097-107. PubMed ID: 22095397
    [Abstract] [Full Text] [Related]

  • 19. Dry powder inhalers: physicochemical and aerosolization properties of several size-fractions of a promising alterative carrier, freeze-dried mannitol.
    Kaialy W, Nokhodchi A.
    Eur J Pharm Sci; 2015 Feb 20; 68():56-67. PubMed ID: 25497318
    [Abstract] [Full Text] [Related]

  • 20. Performance indicators for carrier-based DPIs: Carrier surface properties for capsule filling and API properties for in vitro aerosolisation.
    Faulhammer E, Zellnitz S, Wutscher T, Stranzinger S, Zimmer A, Paudel A.
    Int J Pharm; 2018 Jan 30; 536(1):326-335. PubMed ID: 29217472
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.